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0.000 361 4 

is the factor for reduction of the observed galvanometer effects to the fundamental electrodynamic 

measure of current intensity. This is the factor already introduced above in Section 6 for the 

purpose of reducing the observations to equal directional force of the bifilar coil. The current 

intensity i according to the fundamental electrodynamic measure underlying Ampère's formula is 

finally obtained by means of multiplying the effects observed in scale units by the factor 

24 361 000.0 ⋅ . It is to be noted, however, that this reduction factor rests on empirical data, which 

were in part obtained only in approximation, and therefore make claim to no great precision. 

 

3. Determination of the area, which is demarcated by the bifilar coil and by the fixed coil of 

the dynamometer. 

 

The area of the bifilar coil is already given in Section 6 as  

= 29,314,000 square millimeters. 

In the same way, the area of the other fixed coil of the dynamometer was also determined, namely, 

= 31,327,000 square millimeters. 

It is evident that, in view of the indirect method by which it was made, this determination, too, can 

make claim to no great precision. 

With the help of these three determinations, it is finally possible to also subject to empirical 

proof the absolute value of electrodynamic effects, as yielded by Ampère's law. Namely, from (2) 

is obtained the value of 2i , which corresponds to the normal current intensity, to which the 

observations are reduced. That is, if, in accordance with page 33,
15

 for [the intensity] we make 

000 1002 =y , 

then 

12 026.04 361 000.022 2222 =⋅⋅== yi χ . 

Further, one easily sees that in the calculation of electrodynamic rotational moment on page 40 

made according to Ampère's formula,
16

 the area of the bifilar coil was taken into account only as 
28.55⋅π  square millimeters 

instead of, according to (3)  

= 29 314 000 square millimeters, 

and that in the same way, the area of the fixed coil of the dynamometer (in the place cited) was 

calculated only as 

34.44
3

1
⋅π  square millimeters 

instead of, according to (3) 

= 21, 327,000 square millimeters. 

From this it follows that the calculated values presented in the table on page 42
17

 are to be 

multiplied by 

000 180

4.448.55
3

1

000 327 21000 314 29 22

222

=⋅
⋅⋅

⋅
iπ

π
 

in order to determine the electrodynamic rotational moment according to Ampère's law in absolute 

measure. From (1), however, one sees that the dynamometer effects observed in scale units in the 

                                                 
15

  [N. E.] Page 67 of Weber’s Werke, Vol. 3. 
16

  [N. E.] Page 76 of Weber’s Werke, Vol. 3. 
17

  [N. E.] Page 78 of Weber’s Werke, Vol. 3. 
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table on page 34
18

 are to be multiplied by the factor 3,634, in order to reduce them to absolute 

rotational moments. Thus if the previous factor is divided by this latter one, the factor 49.5 is 

obtained, with which the calculated values presented in the table on page 4219 are to be multiplied, 

in order to be compared with the observed values presented in the table on page 34.20 This factor is 

about 6% smaller than the factor 53.06 above, which was immediately derived from the comparison 

of the calculated and observed values, a difference of the kind that had to be expected with so many 

elements taken from experimental evidence which are necessary for the determination of factors, 

among which several were only approximately determined (see [2] and [3]). Thus, the correctness 

of the absolute values calculated from Ampère's formula, or the correctness of the relation between 

electrodynamics and electromagnetism, is thereby confirmed only in so far as the experiments 

which were made can be validated. This test of the absolute values or of the stated relationship 

between electrodynamics and electromagnetism was not originally among the purposes of the 

experiments communicated here, which merely concerned the dependence of the electrodynamic 

force on the mutual position and distance of the conducting wires which acted on each other, 

otherwise arrangements would have been made to determine the galvanic current with greater 

precision also according to its absolute intensity, as well as to directly ascertain the number of 

windings on the part of the two coils of the dynamometer; that test, however, is presented at the 

same time in approximate fashion, because the experiments described placed the essential data at 

our disposal. Yet, because not all these data possess the requisite precision, a more rigorous 

execution of this test must be reserved for a future occasion. It is readily evident which 

arrangements and alterations are to be made in the experiments in order to lend greater precision to 

the data determined here with less exactness, and requires no further discussion. 

 

Volta-induction with the electrodynamometer. 

 

10. 

 

Up to now we have considered the first class of electrodynamic phenomena, namely, those 

discovered by Ampère, having to do with the forces with which the conductors seek to move one 

another at a given current intensity, and we have confirmed the law established by Ampère for this 

class of phenomena. Ten years later, Faraday's discovery adds to this first class of electrodynamic 

phenomena a second class, where the electrodynamic effects consist of forces which seek to move, 

not the conductors, but the electricity in the conductors. For these phenomena, comprehended 

under the name Volta-induction,21 we can distinguish two fundamental experiments, both of which 

originate from Faraday. 

At the very beginning of his “Experimental Researches in Electricity” (“Experimental-

Untersuchungen über Elektricität,” Poggendorff's Annalen 1832, Vol. XXV, page 93, Section 10), 

Faraday describes the first fundamental experiment in voltaic induction, where two insulated 

copper wires were wound close to another on a wooden roller, and one was connected with the 

galvanometer, the other with a voltaic battery, and where the generation of a current in the first 

                                                 
18

  [N. E.] Page 68 of Weber’s Werke, Vol. 3. 
19

  [N. E.] Page 78 of Weber’s Werke, Vol. 3. 
20

  [N. E.] Page 68 of Weber’s Werke, Vol. 3. 
21

  [N. E.] The expression utilized by Weber, “Volta-induktion,” had been first suggested by Faraday himself in 

paragraph 26 of his first paper on electromagnetic induction published in 1831, see M. Faraday, Experimental 

Researches in Electricity, in Great Books of the Western World, Vol. 45, §26, page 267 (Encyclopaedia Britannica, 

Chicago, 1952): “For the purpose of avoiding periphrasis, I propose to call this action of the current from the voltaic 

battery, volta-electric induction.” In this English translation we utilized the expressions “Volta-induction” and “voltaic 

induction” for this class of phenomena which is nowadays called Faraday’s law of induction. 
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wire was observed each time at the moment when the circuit involving the second wire, was 

either broken or closed again. The second fundamental experiment follows in Section 18, where he 

fastened two copper wires bent in the same zigzags, separated from each other, to two boards, and 

connected one with the galvanometer, the other with the voltaic battery, and where the generation 

of a current in the first wire was observed each time at the moment when the board with this wire 

was either suddenly brought close from far away and laid on the board with the second wire, or the 

board lying on the other board was suddenly lifted and taken away from that other board. 

After Faraday, Nobili and Lenz in particular occupied themselves with this kind of 

induction, and the latter established a simple law, by means of which the induction of a current in a 

conductor which is moved, can be reduced to Ampère's law of electrodynamic motions. 

“Immediately upon reading Faraday's Treatise,” says Lenz (Poggendorff's Annalen 1834, 

Vol. XXXI, page 484 f.), “it seemed to me as though it must be possible to very simply reduce the 

collective experimental results of electrodynamic distribution to the formulations for 

electrodynamic motions, so that if one assumes these to be established, those too are determined, 

and since this view confirmed itself for me through multiple experiments, I will discuss them in 

what follows, and test them partly with familiar experiments, partly with experiments carried out 

expressly for this purpose. The law, according to which the reduction of magneto-electric 

phenomena to electromagnetic phenomena occurs, is as follows: 

 

 “If a metallic conductor moves in the vicinity of a galvanic current or a magnet, a 

galvanic current will be induced in it, whose direction is such that it would have elicited 

motion in the wire at rest, which would be directly opposite to that given to it, assuming 

that the wire were movable only in the direction of the movement or opposite to it.” 

 

For confirmation of this law, insofar as it concerns the induction of a current in a conductor 

which is put into motion, Lenz now introduces the following three experiments by Faraday, by 

himself, and by Nobili. 

 

 “a) When, of two straight-line conductors parallel to one another, one has a galvanic 

current running through it, and if the other conductor is brought closer to it in a parallel 

direction, during the movement, an opposite current will be induced in the conductor 

which is moved from that in the unmoved conductor; however, if it is moved away, the 

induced current is in the same direction as the arousing one.” (Faraday.) 

 “b) When, of two vertical circular conductors of approximately the same diameter, 

which stand with their planes perpendicular to each other, the one, standing fixed, has a 

galvanic current flowing through it, and if then the other, which is rotatable around the 

common vertical diameter as its axis, is suddenly brought out of the perpendicular into 

a position lying parallel, then a current is generated in it, which is opposite to the 

current in the other conductor. I carried out this last experiment,” says Lenz, “with two 

circular conductors, each consisting of 20 windings of covered copper wire; one was 

connected to a 2-square-foot large zinc-copper couple, the other to a sensitive Nobili 

multiplier.” 

 “c) If a bounded conductor, standing perpendicular on an unbounded conductor which 

has a galvanic current flowing through it, moves along this unbounded conductor and in 

the direction of its current, then a current is generated in it, which is directed toward the 

bounded conductor; however, if the bounded conductor moves against the direction of 

the current in the unbounded conductor, the direction of the current induced in it by 

means of distribution is toward the unbounded current. (Nobili, Poggendorff's Annalen 

1833, no. 3, page 407).” 
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By means of the above law, first stated by Lenz, the induced currents are determined, to begin with, 

only according to their direction: Lenz did not give a quantitative determination for the intensity of 

the induced currents. This, however, was provided by Neumann in a still unpublished Treatise, of 

which an excerpt has just appeared in Poggendorff's Annalen 1846, Vol. LXVII, page 31. The 

quantitative determinations thereby obtained, however, require a test by experiment, for which the 

necessary measurements are still lacking. 

Henry reported original experiments on the induction of currents in a stationary conductor 

by breaking the circuit of a nearby voltaic battery (Poggendorff's Annalen 1842, supplementary 

volume, page 282), putting the induced wire at varying distances and in varying positions. He also 

re-used the induced current itself, in order to induce a current in a third conductor, and so forth. 

After these experiments, he directed these induced currents in parallel wires alternately in opposite 

directions; the first, however, being the same direction as the voltaic battery's current which was 

lost due to the breaking of the circuit. 

In this Section, it will now be shown, first, how the phenomena of voltaic induction can also 

be observed with the electrodynamometer, then some determinations of measure for the second of 

Faraday's fundamental experiments will be reported. 

In representing the phenomena of voltaic induction, two different things must be essentially 

distinguished, namely, first, the apparatus for inducing currents, and second, because the induced 

current is not immediately perceptible, an apparatus for observing a perceptible effect of the 

induced current. In the second Faraday fundamental experiment, for example, the two zigzag-

shaped bent copper wires, of which one is attached to a galvanic circuit, along with the device by 

which both wires are suddenly brought closer to each other or farther distant from each other, 

constitutes the first apparatus, which is for inducing the current; the galvanometer, on the other 

hand, which is connected with the other wire, constitutes the second apparatus, for observing a 

visible effect of the induced current. Thus the two essential pieces of apparatus for the experiment 

are distinguished and separated from each other. 

Now, however, an essential simplification of the experiment can be achieved by means of 

the electrodynamometer, where it is possible to use the same apparatus which serves to induce the 

current, for observing a visible effect of the current as well. That is, the bifilar coil of the 

electrodynamometer is made to oscillate, and this motion is used for induction; then the decrease of 

the arc of the oscillations of this bifilar coil is observed, which, as will be shown forthwith, is the 

result of the electrodynamic reciprocal action of the inducing and induced currents. The lawfulness 

of the induction meditative oscillations, as well as of the decrease of the arc of the oscillations, 

observed as the visible effect of the induced current, permits us to carry out precise determinations 

of measure for these phenomena of induction. 

Namely, if one connects the wire of the one coil of the dynamometer, while the bifilar coil 

is swinging, with a voltaic current, then, in order to induce a current in the other coil, one need only 

join the two wire ends to one another. This induced current, which in itself is of course 

imperceptible in the second coil, now immediately exerts in the dynamometer itself a perceptible 

electrodynamic force on the current of the first coil, and thereby changes the oscillation of the 

bifilar coil. Thus, if one observes this change, one can come to know the electrodynamic force 

which causes it, and in turn, from the electrodynamic force, to know the induced current, to which 

it is proportional, without it being necessary to conduct the induced current through the multiplier 

of a galvanometer. The dynamometer itself thus serves for inducing the current as well as for 

observing a visible and measurable effect of the induced current. 

If the bifilar coil is stationary, no current will be induced; consequently the electrodynamic 

force = 0, and the bifilar coil will then not be moved by the fixed coil. However, if the bifilar coil is 

swinging, there are two cases to distinguish: i.e., either the fixed coil is connected to the voltaic 
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battery and the bifilar coil is a closed circuit in itself; in that case a current is induced in the 

swinging bifilar coil: or the swinging bifilar coil itself is connected by its two suspension wires to 

the voltaic battery, and the fixed coil is a closed circuit in itself; in that case, a current is induced in 

the fixed coil. In both cases, an electrodynamic force is yielded which changes the oscillation of the 

bifilar coil in the same way. 

The observation of these changes in oscillation, as a result of an induced current, and of the 

electrodynamic reciprocal action between the induced and inducing wire coils, which is dependent 

on that induced current, according to Ampère's law, must be carried out, however, in an altogether 

different way from the observations with the dynamometer described in the preceding Section. 

Observations of the decrease of the arc of the oscillations must replace the previous observations of 

position on the dynamometer. The necessity of this altered method of observation is easily shown, 

as follows. 

The electrodynamic reciprocal action of the two coils, which is to be observed with the 

electrodynamometer, consists, according to Ampère's law, of a rotational moment, which acts on 

the swinging bifilar coil and corresponds to an altered rest position of this coil. However, this rest 

position of the bifilar coil can not be directly observed when the coil is swinging, but can only be 

determined from several observations, which diverge from one another as to period of oscillation, 

that is, only under the precondition, that in the interim, the external forces acting on the coil, have 

remained constant, or have changed continuously and proportionally over time. Therefore, if the 

electrodynamic influence which occurs on the swinging coil as a result of the induced current, 

reverses itself from oscillation to oscillation, then the rest position of the coil, as determined from a 

system of observations during the oscillation, will be unchanged despite the presence of the 

electrodynamic influence. Observation shows, in fact, that the latter occurs, that the electrodynamic 

influence, if it actually exists as a result of an induced current, would thus have to reverse itself 

from oscillation to oscillation, and cannot be investigated by means of mere observations of 

position on the dynamometer. 

Now, if such an electrodynamic influence on the swinging coil now actually occurs, which 

reverses itself from oscillation to oscillation: then it will certainly not be discernible by means of 

determining the rest position of the coil; it must, however, be recognizable in the arcs of oscillation 

of the coil; namely, the size of the arcs of oscillation must change from oscillation to oscillation, 

either always increasing, or always decreasing. 

In actuality, empirical results show that, while the calculated rest position of the swinging 

coil always remains the same, the arc of oscillation always decreases, and it emerges from the 

succeeding experiments, that this decrease actually originates from electrodynamic influences and 

not from extraneous external causes, if the ordinary influence of the resistance of the air is taken 

into account. 

Therefore, in order to observe this second class of phenomena with the 

electrodynamometer, it will be necessary for precise measurement of the decrease of the arcs of 

oscillation, to make oscillation experiments with the bifilar coil of the dynamometer, while for 

purposes of the Ampère electrodynamic phenomena, we could confine ourselves to deflection 

experiments or observations of position. 

For our purposes, it is of primary importance to indicate that the observations of oscillation 

can be carried out on the dynamometer by the same method, and with just as great precision, as on 

a magnetometer. First, I wish to present a prefatory series of oscillation experiments which I made 

with the dynamometer, in which no electrodynamic influence occurred, given that no galvanic 

current whatever was conducted through the instrument and the wire ends even remained 

unconnected. 
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The method of setting up these experiments is the same method presented by Gauss in the 

“Resultaten aus den Beobachtungen des magnetischen Vereins in Jahre 1837,” page 58 ff.,22 and 

thus it is not necessary to fully cite the original protocols; it will suffice to cite the extract which is 

derived from these protocols, just as in other locations. 

The Meyerstein dynamometer, depicted in Figs. 2, 3, and 4, served for the following 

observations, where the swinging coil was suspended at the center of the fixed coil, and the 

telescope was placed about 6 meters from the instrument. The distance of the mirror from the scale 

was 6,018.6 scale units, and  

1 scale unit = 17.135 6". 

The observations were made in alternation by different observers, namely, by Dr. Stähelin from 

Basel, by my assistant Mr. Dietzel, and by me. Each made a set of observations according to the 

formulation given in loc. cit., page 61,
23

 which comprises six instances of going past a designated 

scale point lying close to the midpoint of the arc of oscillation and seven elongation points. In the 

following table, each horizontal line gives the results of such a set of observations, namely, the 

numerical ordering of the oscillation, the corresponding time, the corresponding rest position in 

scale units, the corresponding arc of oscillation in scale units, and the logarithm of the latter. 

 

                                                 
22

  [N. H. W.] Gauss, Werke, Vol. V, page 374. 
23

  [N. H. W.] Gauss, Werke, Vol. V, page 376. 
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Observations for determining the period of oscillation and the decrease of the arcs of oscillation 

of the bifilar coil of the dynamometer in open circuits. 

Oscillation No. Time Position Arcs of 

Oscillation 

Log. 

0. 5
h
 16' 28.53'' 457.10 650.80 2.813 448 

14. 20' 10.20'' 457.38 601.43 2.779 185 

25. 23' 4.39'' 457.15 564.90 2.751 972 

52. 30' 12.50'' 457.19 485.28 2.685 992 

82. 38' 8.02'' 457.29 409.62 2.612 381 

109. 45' 16.16'' 457.15 353.08 2.547 873 

134. 51' 52.08'' 457.65 306.70 2.486 714 

163. 59' 31.80'' 457.41 261.08 2.416 774 

189. 6
h
 6' 23.90'' 457.56 226.33 2.354 742 

212. 12' 28.22'' 457.69 198.68 2.298 154 

232. 17' 45.45'' 457.63 178.26 2.251 054 

254. 23' 33.89'' 457.78 157.98 2.198 602 

284. 31' 29.30'' 457.73 134.17 2.127 655 

309. 38' 5.53'' 456.55 116.30 2.065 580 

328. 43' 6.90'' 458.02 105.25 2.022 222 

369. 53' 56.24'' 457.81 83.68 1.922 622 

387. 58' 41.96'' 457.90 75.45 1.877 659 

 

If the difference between the first and last time is divided by the number of oscillations, one obtains 

a rather precise determination of the period of oscillation of the swinging coil, because the 

correction by reduction to infinitely small arcs contributes only a little in the case of such small arcs 

of oscillation as occurred here. This approximated period of oscillation is  

= 15.848 65". 

If this approximated period of oscillation is used to reduce all the times in the table, by deducting 

the product of the oscillation number times the period of oscillation, from the first time, then the 

values contained in the third column of the following table are obtained: 
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Oscillation No. Time Reduced time Variation from the 

mean 

0. 5
h
 16' 28.52'' 5

h
 16' 28.53'' + 0.13'' 

14. 20' 10.20'' 28.32'' - 0.08'' 

25. 23' 12.50'' 28.17'' - 0.23'' 

52. 30' 12.50'' 28.37'' - 0.03'' 

82. 38' 8.02'' 28.43'' + 0.03'' 

109. 45' 16.16'' 28.66'' + 0.26'' 

134. 51' 52.08'' 28.36'' - 0.04'' 

163. 59' 31.80'' 28.47'' + 0.07'' 

189. 6h 6' 23.90'' 28.50'' + 0.10'' 

212. 12' 28.22'' 28.31'' - 0.09'' 

232. 17' 45.45'' 28.56'' + 0.16'' 

254. 23' 33.89'' 28.33'' - 0.07'' 

284. 31' 29.30'' 28.28'' - 0.12'' 

309. 38' 5.53'' 28.30'' - 0.10'' 

328. 43' 6.90'' 28.54'' + 0.14'' 

369. 53' 56.24'' 28.07'' - 0.33'' 

387. 58' 41.96'' 28.53'' + 0.13'' 

 

From the agreement of these reduced values, whose variation from the mean values always remains 

less than 1/3 second, it is obvious, that the determination of the period of oscillation of the 

dynamometer's bifilar coil is capable of the same rigor and precision as in the case of the 

magnetometer, in which connection it is to be taken into consideration, that that variation appears 

to be magnified by the constant variation which is known to always occur between two observers. 

The determinations of the rest position of the swinging coil from the elongation observations in the 

third column of the first table show great agreement, as proven by the following overview of their 

deviations from the mean values, expressed according to their arcs: 

 

- 6.3'' + 3.1 + 4.5 

- 1.5'' - 1.0 - 15.8 

- 5.5'' + 1.5 + 9.4 

- 4.8'' + 3.8 + 5.8 

- 3.1'' + 2.7 + 7.4 

- 5.5'' + 5.3  

 

One could not wish for greater agreement of all observations of position, particularly when one 

takes into consideration, that the telescope stand was placed on the wooden floor of the room, 

where, it is evident, the orientation of the telescope could easily be somewhat altered by footsteps 

on the floor. 

Lastly, it remains for us to consider the decrease in the arcs of oscillation. The individual 

sets of observations succeed each other, in part, in such a short time, that the decrease in the arcs of 

oscillation in the interim is not large enough to give a precise determination of the ratio between 

two successive arcs of oscillation. Hence the logarithms of this ratio may be determined, by, instead 

of dividing the difference of each two immediately successive logarithm of the arcs of oscillation, 

dividing the difference between the first and fifth, the second and sixth, and so forth, by the number 

of oscillations in between. One then obtains from the above 17 sets of observation, instead of 16 
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values, only 13 values, but more precise values of the logarithmic decrement, namely, the 

following. Before each value the oscillation number is noted, to whose mean it appertains. 

 

Oscillation No. Logarithmic decrement Variation from the mean 

41. 0.002 452 + 0.000 038 

61 .
2

1
 0.002 435 + 0.000 021 

79 .
2

1
 0.002 433 + 0.000 019 

107 .
2

1
 0.002 425 + 0.000 011 

135 .
2

1
 0.002 408 - 0.000 006 

160 .
2

1
 0.002 424 + 0.000 010 

183. 0.002 405 - 0.000 009 

208 .
2

1
 0.002 397 - 0.000 017 

236 .
2

1
 0.002 390 - 0.000 024 

260 .
2

1
 0.002 398 - 0.000 016 

280. 0.002 384 - 0.000 030 

311 .
2

1
 0.002 400 - 0.000 014 

335 .
2

1
 0.002 427 + 0.000 013 

Mean = 0.002 414. 

 

Thus there results a mean decrease in the arcs of oscillation, according to which the size of the arc, 

after 124.7 swings, or after 32 minutes 56 1/3 seconds, declines by half. The agreement of the 

partial values proves, that even these small decreases in the arcs of oscillation can be rigorously 

measured. 

On the same day, immediately before the series of observations just described, another 

similar series of observations was made under altogether the same external conditions, merely with 

the difference, that the two ends of the fixed coil were connected with a battery of three small 

Grove’s elements, exactly as in Section 4, and that the free ends of the suspension wires of the 

bifilar coil were linked to each other. More precise information about the current conducted 

through the fixed coil, was provided by observation of the deflection which this coil itself produced 

on the mirror magnetometer (described in Section 3), which was placed 583.5 mm north of the coil. 

This observed deflection of the mirror magnetometer is noted in the last column of the following 

table. The value of the scale unit of this magnetometer depends on the horizontal distance of the 

mirror from the scale, which was = 1,301 scale units. The observer and the methods of observation 

were the same. The following table gives the extract of this series of observations exactly as the 

preceding table gives the other. 
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Observations for determining the period of oscillation and the decrease of the arcs of oscillation of 

the bifilar coil of the dynamometer when a current from three Grove’s elements is passing through 

the fixed coil, while the conducting wire of the bifilar coil was closed. 

Oscillation 

No. 

Time Position Arcs of 

oscillation 

Log. Deflection of 

mirror 

magnetometer 

0. 3
h
 29' 44.88'' 464.05 764.10 2.883 150 108.50 

9. 32' 7.03'' 474.44 679.15 2.831 966  

18. 34' 29.58'' 464.23 604.05 2.781 073  

35. 38' 50.17'' 464.07 484.15 2.684 980 108.60 

47. 42' 9.10'' 464.20 414.60 2.617 629  

57. 44' 47.66'' 464.25 365.50 2.562 887  

74. 49' 16.79'' 464.22 292.27 2.465 784  

85. 52' 10.80'' 464.30 253.30 2.403 635  

103. 56' 56.11'' 464.40 200.80 2.302 764  

118. 4h 0' 53.43'' 464.25 165.56 2.218 955 108.95 

130. 4' 3.26'' 464.37 141.37 2.150 357  

143. 7' 28.90'' 465.23 119.33 2.076 750  

157. 11' 11.11'' 464.96 100.49 2.002 123 109.20 

179. 16' 59.23'' 465.20 75.59 1.878 464  

196. 21' 28.65'' 464.88 60.58 1.782 329 190.40 

210. 25' 10.23'' 464.96 50.08 1.699 664  

 

For this series of observations, which is otherwise very similar to the preceding one, I 

confine myself to considering the decrease in the arcs of oscillation. The logarithm of the ratio of 

two successive arcs of oscillation, or the logarithmic decrement, is to be determined here by 

dividing the difference between the first and fourth, the second and fifth, and so forth, logarithm by 

the number of the oscillations in between. From the 16 sets of observation above, this yields 13 

values of the logarithmic decrement, as contained in the following table, with the addition of the 

number of oscillations to whose mean each appertains. 

 

Oscillation No. Logarithmic decrement Variation from the mean 

17 .
2

1
 0.005 662 + 0.000 042 

28. 0.005 640 + 0.000 020 

37 .
2

1
 0.005 595 - 0.000 025 

54 .
2

1
 0.005 620 0.000 000 

66. 0.005 631 + 0.000 011 

80. 0.005 655 + 0.000 035 

96. 0.005 610 - 0.000 010 

107 .
2

1
 0.005 628 + 0.000 008 

123. 0.005 650 + 0.000 030 

137 .
2

1
 0.005 560 - 0.009 060 



 61 

154 .
2

1
 0.005 549 - 0.000 071 

169 .
2

1
 0.005 555 - 0.000 065 

183 .
2

1
 0.005 707 + 0.000 087 

Mean = 0.005 620. 

 

Thus there results a mean decrease in the arcs of oscillation, according to which the size of the arc, 

after 53,564 swings, or after 14 minutes 8.187 seconds, declines by half. Here too the agreement of 

the partial values attests to the rigor of the measurement, and it is not remarkable that at the end, 

where the arcs of oscillation had become very small, the differences appear somewhat larger. 

The difference which occurs between this latter determination of the logarithmic decrement 

and the previous one, is based, not on different external conditions influencing the swinging coil, 

for these remain completely the same, but on the inducing influence of the fixed coil on the 

swinging coil, which constitutes the sole difference between the first and second series of 

experiments. Both series of experiments were repeated on several days, and not only yielded almost 

exactly the same difference in values of the logarithmic decrement, but also yielded nearly equal 

absolute values for both decrements, whereby no doubt remains, that an induction of galvanic 

currents actually takes place in the closed bifilar coil by means of the galvanic current in the fixed 

coil: in fact, an induction whose strength was such that the effect of the induced current which is 

visible in the decrease of the arcs of oscillation, is susceptible of precise measurement. 

 

11. 

 

After this demonstration of the practical usefulness of the electrodynamometer for 

displaying the phenomena of voltaic induction, secondly, we proceed to derive some lawful 

determinations for these phenomena from the observations of the oscillations and of the decrease of 

the arcs of oscillation of the bifilar coil. 

First, it has already been noted, that the changing magnitude of the arcs of oscillation as a 

result of the induced currents, given an unchanged mean position of the bifilar coil, proves that the 

direction of the induced current changes with the direction of motion of the swinging bifilar coil, 

and that consequently opposite currents are induced by means of opposite motions, as is also the 

case in magnetic induction. 

Second, the decrease in the arcs of oscillation proves, that as parallel elements of the 

inducing wire approach, a current opposite to that inducing wire is induced; as parallel elements 

withdraw, a current in the same direction as that in the inducing wire is induced. If the opposing 

relation of the current directions of the inducing and induced currents existed, there would have to 

result a continuous increase in the arcs of oscillation. This determination as well is analogous to the 

one empirically established for magnetic induction. 

Third, the geometric law of the decrease in the arcs of oscillation due to the induced current, 

proves that the intensity of the induced current is proportional to the velocity of the inducing 

motion; for the geometric law of the decrease of arcs of oscillation proves that the force which 

produces this decrease, i.e. the intensity of the induced currents, always remains proportional to the 

magnitude of the arcs of oscillation: it is known, however, that the magnitude of the arcs of 

oscillation of an isochronous swinging body is always proportional to the velocity it reaches in the 

corresponding moments of its period of oscillation. 

Fourth, as for the lawful determination of the absolute strength of the voltaic induction, we 

wish lastly to derive the following principle from observations on the dynamometer. 
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The voltaic induction is equal to the magnetic induction in the oscillating closed circuit 

bifilar coil, when the former is elicited by a galvanic current conducted through the 

fixed coil, the latter elicited by magnets which are located in a position with respect to 

the bifilar coil such that when a current goes through the bifilar coil, the electrodynamic 

rotational moment of that current is equal to the electromagnetic rotational moment of 

these magnets. 

 

By means of this principle, as can easily be seen, the determination of voltaic induction with the 

help of known electromagnetic and electrodynamic forces is reduced to the laws of magnetic 

induction, which have already been investigated more precisely by other means. At the moment, 

admittedly, in order to prove this principle, I can only give a few measurements carried out with the 

dynamometer, which were made under circumstances in which no precise determinations down to 

small fractions were possible; however, these measurements may be regarded as sufficient for the 

present, because, if the foregoing principle were incorrect, there would be no basis for that 

approximate agreement which undoubtedly arose from the observations. For a more refined test of 

the foregoing principle, all the involved measurements would have to be carried out with greater 

precision. However, in order to set up all the conditions fully appropriately for attaining this 

uniform precision, it would be necessary to prepare special instruments simply for this purpose, 

which up to now it has not been possible for me to do. 

Here I will briefly assemble the results of the observations, without going into the details of 

the observations themselves, which generally conformed to those of the preceding observations. 

 

 
 

The first series of observations concerned measurement of magnetic induction. This is 

exactly the series for which conditions could be shaped least favorably, and which accordingly set 

narrower limits to the precision of the entire determination of measure, which under somewhat 

more favorable conditions could have easily been significantly extended. That is, the bifilar coil of 

the dynamometer described in Section 1 and depicted in Figs. 2, 3 and 4, was made a closed circuit 
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and put into oscillation, while outside the casing which protected the swinging bifilar coil from 

the air, several small magnets NS, N'S' (Figure 4) were fixed in the position in which they induced 

the strongest magneto-electric currents in the swinging bifilar coil. Namely, all of these small 

magnets together lay perpendicular to the magnetic meridian passing through the axis of the bifilar 

coil, i.e., symmetrically north and south of the bifilar coil, and their corresponding poles were 

thereby turned toward the same side, as the diagram shows, in which N and N' denote the north 

poles, S and S' the south poles. Then the oscillations of the bifilar coil, as earlier, were observed, 

starting from the moment when they could be measured by means of the scale, until they became 

too small for precise determination of the decrease of the arcs of oscillation. These observations 

were calculated in the same way as above, and yielded the logarithmic decrement for the decrease 

of the arcs of oscillation  

= 0.002 638. 

The same series of experiments was once again repeated, with the sole difference, that the bifilar 

coil was unclosed, and there resulted for the logarithmic decrement of the decrease of the arcs of 

oscillation the following somewhat smaller value:  

= 0.002 541. 

The slight difference between these two values,  

= 0.000 097, 

is the effect of the magneto-electric currents, which were induced in the swinging, closed-up bifilar 

coil by means of the fixed magnets. The greatest care was taken to determine this small difference 

with the utmost possible precision, and the experiment leaves nothing more to be desired in that 

respect; nevertheless, it is in the nature of the smallness of the difference, that, as the repetitions of 

the experiments showed, it must be considered as 6 to 8 percent uncertain. 

The second series of experiments concerned the electromagnetic rotational moment. The 

small magnets remained undisturbed in their place, while a weak current was conducted from a 

constant voltaic battery; this battery's current passed as well through a galvanometer, by means of 

which its intensity was measured. Now the rest position of the bifilar coil was observed, alternately, 

when the voltaic battery was closed and when it was open. From a series of repetitions, after the 

reduction of the results to the same current intensity (which had varied only very little), there 

resulted, with great agreement, the difference  

= 19.1 scale units. 

This difference is a measure of the electromagnetic rotational moment, which the magnetic rods 

mentioned above exerted on the current in the bifilar coil. 

The third series of experiments concerned the electrodynamic rotational moment. The small 

magnets were distanced, and the two wire ends of the fixed coil of the dynamometer were 

connected to a strong voltaic battery, while the same weak current of a constant voltaic battery was 

conducted through the bifilar coil, as in the previous series. The intensity of both currents was 

measured by means of a galvanometer.
24

 Now, as in the previous series of experiments, the rest 

position of the bifilar coil was observed, alternately when the voltaic battery was closed and when 

it was open. From a series of repetitions, after the reduction of the results to the same current 

intensity, there resulted, with great agreement, the difference  

= 101.9 scale units. 

This difference is a measure of the electrodynamic rotational moment, which the strong current in 

the fixed coil exerts on the weak current in the bifilar coil. 

Lastly, the fourth series of experiments concerned voltaic induction. The bifilar coil was 

closed up and put into motion, while the current of the same voltaic battery was conducted through 

                                                 
24

  [N. A.] Both currents originated from the same constant battery, and their differing intensity in the two coils was 

effected by means of a division of the current. 
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the fixed coil of the dynamometer, as in the previous series of experiments. Then the oscillations 

of the bifilar coil were observed just as in the first series of experiments, and from this the 

logarithmic decrement of the decrease in the arcs of oscillation was calculated. After reduction to 

that current intensity in the fixed coil, on which the value of the electrodynamic rotational moment 

found by means of the preceding series of experiments is based, this decrement resulted  

= 0.005 423. 

The same series of experiments was once again repeated with the sole difference, that the bifilar 

coil was open, and the following smaller value resulted for the logarithmic decrement of the 

decrease in the arcs of oscillation:
25

  

= 0.002 796. 

The difference between these two values,  

= 0.002 627, 

is the effect of the voltaic induction, which took place in the closed and oscillating bifilar coil, by 

means of the current in the fixed coil. 

Since, therefore, the electrodynamic force of our current in the fixed coil, after the third 

series of experiments, was not equal to the electromagnetic force of our magnets in the second 

series of experiments, but were in the ratio of  

101.9 : 19.1, 

the forces of the two induced currents, induced under altogether the same conditions in the bifilar 

coil, should also not be equal, but should likewise be in the ratio of  

101.9 : 19.1. 

If, however, the intensities of the currents induced in the swinging bifilar coil stand in the given 

ratio, then, from the reciprocal action of these currents with those galvanic and magnetic forces 

producing them, and therefore proportional to them, will have to emerge an attenuation of the 

oscillations of the bifilar coil, whose logarithmic decrements are in the ratio of the squares of 101.9 

: 19.1, i.e., like 

28.5 : 1. 

Instead of that, from the observations of the decrease of the arcs of oscillation, we have found in 

both cases the ratio of the portions of the logarithmic decrement stemming from the induced current 

according to the fourth and first series of experiments to be  

0.002 627 : 0.000 097 = 27.1 : 1, 

a ratio differing from the calculated one by about 5 percent; the small logarithmic decrements 

proceeding from the magneto-electric currents in the observed cases, as already mentioned above26 

on page 63,27 can no longer be relied upon. 

 

12. 

 

An induced current of equal strength to the inducing current. 

 

The constancy of the logarithmic decrement of the swinging bifilar coil under the influence 

of a constant current in the fixed coil, and of the currents thereby induced in the swinging bifilar 

coil, already resulted
28

 on page 61
29

 in the law for induction, that the intensity of the induced 

                                                 
25

  [N. A.] This value would be still smaller, if at the same time, the current in the fixed coil were interrupted, because 

this current, even given an open bifilar coil, still induced currents in the brass mounting of the coil during the 

oscillation, exactly as was the case in the first series of experiments with the magnets, which, however, worked far 

more weakly. 
26

  [N. E.] Regarding the 6-8% uncertainty. 
27

  [N. E.] Page 105 of Weber’s Werke, Vol. 3. 
28

  [N. E.] Third law at the beginning of Section 11. 
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current is proportional at any moment to the velocity of the swinging coil at that moment. If 

hereby this law is now placed beyond doubt, then it follows that, in the case of a given constant 

inducing current, one could arbitrarily strengthen the current induced by it, if one increased that 

velocity, and that there would have to be a velocity, at which the intensity of the induced current 

would be just as strong as that of the inducing current. It may not be uninteresting to give a more 

precise determination of this velocity. This determination can easily be obtained, if one (1) 

calculates from the measured arcs of oscillation of our coil and from its arcs of oscillation, likewise 

measured according to known laws, the velocity which the coil possesses in the center of its 

oscillation; (2) if one calculates, from the likewise measured values of the logarithmic decrement 

caused by the voltaic induction, the deflection of the coil, which would be produced by the force 

which retards the velocity of the swinging bifilar coil at the moment when it finds itself in the 

center of its oscillation, if it continues uniformly in the same direction; and (3) lastly, if a current is 

put through the bifilar coil, and the intensity of this current is varied until the electrodynamic 

deflection of the coil as a result of the reciprocal action of this current and of the constant current in 

the fixed coil is equal to that deflection in (2), and if the ratio of the intensities is then determined. 

– It is then clear that, when the velocity of the swinging coil is increased according to the ratio of 

these intensities, the induced current will be equal in strength to the inducing current at the moment 

when the coil finds itself in the center of its arc of oscillation. In this way it turned out that the 

bifilar coil of the dynamometer described in Section 1 would have to be turned around its 

perpendicular axis of rotation  

31 times 

in one second, in order for the current induced by the arbitrarily strong or weak current of the fixed 

coil of this instrument to have the intensity of the original current at the moment when both coils 

were perpendicular to one another. At this velocity of the coil's rotation, the greatest linear velocity 

of the current elements would amount to 6.5 meters or about 20 feet in one second, since, according 

to page 7,
30

 the radius of the bifilar coil was 33.4 millimeters. 

 

13. 

 

Determination of the duration of momentary currents with the dynamometer, along with 

application to physiological experiments. 

 

In order to portray and to measure the reciprocal action of two conducting wires with the 

help of the dynamometer, no strong currents are required, as the data presented prove; on the 

contrary, weak currents suffice, which, if other devices are used, are barely perceptible, such as, for 

example, the induced currents produced by the oscillations of the bifilar coil, according to Section 

10, which were barely visible without an optical device. This circumstance is of practical 

importance, because these experiments thereby received a far greater expansion, and the way was 

paved for the most manifold applications of the dynamometer, especially to galvanometric 

determinations as well. A compass or a magnetometer is called a galvanometer when it is equipped 

with a multiplier, because it serves to measure the intensity of the galvanic currents which are led 

through the multiplier wire. The measurement of the intensity of galvanic currents is hereby based, 

not on purely galvanic, but on electromagnetic effects. By the same right a Volta-meter, too, 

deserves the name of a galvanometer, because it likewise serves to measure the intensity of 

galvanic currents which are conducted through the Volta-meter; it is merely that the latter is an 

electrochemical galvanometer, the former an electromagnetic one. Now, the electrodynamometer is 

                                                                                                                                                                 
29

  [N. E.] Page 103 of Weber’s Werke, Vol. 3. 
30

  [N. E.] Page 36 of Weber’s Werke, Vol. 3. 
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also a galvanometer, because it serves to measure the intensity of galvanic currents which are 

conducted through it; it is, however, a purely galvanic or electrodynamic one, because it is the 

reciprocal action of the galvanic currents itself which is used therein for measuring the current 

intensity, and hence it merits even preferentially the name galvanometer. 

Nevertheless, it does not seem possible to ascribe any great practical importance to the 

electrodynamometer, if it is no longer a matter of testing the fundamental electrodynamic laws, but 

merely of galvanometric determinations, because the multifarious apparatus of the Volta-meters 

and of the electromagnetic galvanometers for measuring the intensity of galvanic currents already 

performs such good and convenient service, that no reason presents itself to replace this already 

utilized instrument with a new one. As long as it is simply a matter of objectives which have 

already been attained with the latter instruments, or can be attained with them, a new instrument 

like the dynamometer can, in fact, have no great practical importance attached to it. However, 

things are different in those cases, where the existing devices are inadequate, as, for example, when 

it is a matter of determining the current intensity at particular moments. 

That is, the sine or the tangent of the deflection of the magnetic needle in the sine or 

tangent-galvanometer only gives a correct measure of the current intensity in the multiplier at a 

definite moment, if the current in the multiplier acting on the needle is constant; if, on the contrary, 

its intensity is variable, then the intensity of the current for a particular moment cannot be derived 

at all from the deflection of the magnetic needle, or only by means of calculating with the help of a 

given law designed for those variations. Of course, we may then let the current act on the needle for 

only a moment, but the deflection of the needle elicited by this momentary influence, even if it is 

large enough for precise observation and permits refined measurement, in no way suffices per se 

for the determination of the current intensity at that moment; on the contrary, knowledge of another 

element is required, namely, knowledge of the duration of that momentary influence, which cannot 

be achieved with the instrument. Only when one knows the amount of electricity which the 

momentary current puts through, and the time in which this electricity has gone through a cross-

section, can the intensity be determined by dividing the former by the latter. However, from the 

deflection of the needle elicited by that momentary influence, only a determination of that amount 

of electricity can be derived; the time remains undetermined. 

Now, the dynamometer serves in such cases essentially to supplement the electromagnetic 

galvanometer, for both instruments give us two intrinsically different, mutually independent 

determinations, from which the two unknown elements, on which the current intensity depends, can 

be derived. The difference of the determinations obtained with the two instruments already 

manifests itself, when one conducts continuous constant currents of differing intensity through a 

circuit, in which the usual galvanometer, and also the dynamometer, is included, and the angle of 

deflection is observed, at which for each of these currents, equilibrium exists on these instruments. 

These angles of deflection increase on both instruments with the intensity, but according to 

different laws; for the tangents of the angles of deflection of the dynamometer are, as was proven in 

Section 2, proportional to the squares of the tangents of the angle of deflection of the 

magnetometer. 

That difference in the determinations provided by the two instruments shows itself even 

more remarkably, if a constant current, as just described, is put through both instruments, and the 

corresponding deflections of both are observed, and then, without changing the current intensity, 

simply the direction of the current in all the conducting wires of the two instruments is reversed 

with the help of a commutator; it is known, that after this reversal of the direction of the current 

direction in the multiplier, the multiplier's magnetic needle is deflected just as far as before the 

reversal, but to the opposite side. In the dynamometer this does not take place, but rather, the 

deflection occurring before the reversal of the current remains unchanged even after the reversal of 

the current, so that, provided that the reversal of the current has actually been momentary, without 
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interruption, no influence at all on the dynamometer is to be perceived from this reversal. The 

dynamometer in this case acts as an electromagnetic galvanometer would act, if, at the moment 

when the current in the multiplier were reversed, the poles of the needle were also switched, 

assuming that the needle, like the bifilar coil of the dynamometer, possessed a definite directional 

force independent of the state of its poles. This sameness of the effects of positive and negative 

currents in the dynamometer in this easily executed experiment, ought to arouse all the more 

attention, the more one is accustomed to see opposite currents correspond to opposite effects. 

This experimentally proven difference in the determinations provided by the two 

instruments can now easily be more precisely defined. The direct effect of the current passing 

through the conducting wires of both instruments is a rotational moment, which strives to put the 

compass or bifilar coil on which it acts, into a rotational motion. This rotational moment is 

proportional in the magnetic galvanometer to the intensity i of the current acting on the needle, and 

to the magnetic moment m of the needle, which is acted upon, and is thus represented by the 

formula  

mia ⋅ , 

in which, if we confine ourselves to small angles of deflection, a is to be considered as a constant to 

be determined once and for all for each instrument. The effect of this rotational moment in the time 

element dt is then expressed by the product 

dtami ⋅  

and is equal to the product of the rotational velocity, in which the rotatable body is thereby put, 

with the moment of inertia of this body. 

In the dynamometer, on the contrary, the rotational moment is proportional to the intensity i 

of the current in the fixed coil, which acts on the bifilar coil, and also to the intensity i of the 

current in the bifilar coil itself, which is acted upon, and is thus represented by the formula 
2ib ⋅ , 

where b, if we confine ourselves to small angles of displacement, denotes a constant to be 

determined once and for all for each dynamometer. The effect of this rotational moment in the time 

element dt is thus expressed by the product 

dtbi ⋅2 , 

and is likewise equal to the product of the rotational velocity produced with the moment of inertia 

of the rotatable body. 

Now, if this current persists uniformly during the short time from t = 0 to ϑ=t , and if the 

inertial moment of the needle and of the bifilar coil are denoted with p and q, then the angular 

velocity which is thereby produced is 

for the needle ϑ
ϑ

i
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am
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a
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If both instruments were previously at rest, then they are put into oscillation by the transmission of 

this angular velocity, and if s and ς  denote the periods of oscillation of the two instruments, then, 

according to well-known laws of oscillation, if no attenuation takes place, and if the time interval 

ϑ , in which the needle and the bifilar coil receive that angular velocity, is so small, that the 

disturbance itself during this small time interval, as with a shock, does not need to be taken into 

consideration, then the rotational velocity for any moment at the end of time t is expressed by 
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e
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where e and ε  denote the elongation lengths, which can be determined for both instruments by 

observation. If now the first moment after the cessation of the current is substituted for t, that is, 

ϑ=t , then the velocities originally transmitted by the current to the two instruments are obtained: 

s

e
i

p

am π
ϑ =⋅ ,  

ς
επ

ϑ =⋅ 2i
q

b
,  

or one has two equations for determining the current intensity i and the duration of the current ϑ , 

by means of which they can be calculated from the measured deflections of both instruments e and 

ε , namely: 

e
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b

q
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where amsp /π  and ςπ bq /  denote constants to be determined once and for all. The sought-for 

current intensity i results from this: 
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and the sought-for duration of this current: 
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Since the periods of oscillation of the two instruments s and ς  can be directly determined, 

it is merely necessary for the complete determination of the constants of both instruments, to put 

through both instruments a constant standard current, whose intensity = 1, and to observe the 

tangents of the angles of deflection e' and 'ε , for which equilibrium then exists. The tangents of the 

angles of deflection are then, according to well-known laws, to be equated with the ratios of the 

deflecting rotational moments for the current intensity = 1, namely 

am  and  b, 

to the directional forces of the compass and the bifilar coil, namely 
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If these values are substituted in the above equations, one obtains 
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in which by means of a one-time observation of the deflections e' and 'ε  as well as the period of 

oscillation of the compass and the bifilar coil s and ς , the constant coefficients s/ς , '/' εe , ς/2s  

and 2'/' eε  are determined for ever. Thus it follows from this, that that the observations 

simultaneously made on both instruments of the deflections e and ε  supplement each other, by 

jointly providing complete data for determining the intensity and the duration of a momentary 

current, while each one, considered individually, acquaints us with neither the one nor the other. 
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The cases where this complete determination of momentary currents, attainable by means 

of simultaneous use of both instruments, finds useful applications, are not far to seek; they present 

themselves in a manifold way. Momentary currents, for example, are frequently used for 

physiological experiments, in order to investigate the influence of galvanism on the nervous system; 

for it turns out that a continued action of the galvanic current very quickly deadens the nerves 

through which it goes, particularly when it is a sensory nerve, so that no extended series of rapidly 

successive experiments can be carried out in this manner, which becomes possible, if the current is 

always allowed to go through the nerve only for a moment. These highly interesting observations, 

however, can lead to no definite results, without a knowledge of the currents which elicit those 

effects, especially of their intensity and their duration. A thorough investigation of the 

physiological effects of galvanic currents on the nervous system hence requires the complete 

determination of these two elements, which, however, can only be achieved according to the just-

developed method of simultaneous observations of the galvanometer and dynamometer. In any 

case, it is an interesting task for the physiology of nerves, to establish the time limits for how long a 

current must act on the nerves, in order to elicit a definite effect, and how this necessary time 

interval varies with the strength of the current. I venture to hope that the electrodynamometer will 

be used for the purpose presented, especially since in the local Physiological Institute, some 

experimental tests have already been made with good results, which will be communicated on 

another occasion. At present, I will confine myself above all to applications which can be made in 

the realm of physics itself, specifically, above all in the field of pure electrical theory. 

 

14. 

 

Repetition of Ampère's fundamental experiment with static electricity, and measurement of the 

duration of the electrical spark during discharge of a Leyden battery. 

 

Ampère's fundamental experiment regarding the reciprocal action of two conducting wires 

at a distance had up to now been carried out with a single form of galvanic currents, namely, 

currents which originated from a voltaic battery. If one now finds oneself justifiably moved to the 

conjecture, that all galvanic currents, from whatever source they might originate, are subject to the 

same laws, and that therefore Ampère's law regarding the reciprocal action of two conducting wires 

would be confirmed for all kinds of galvanic or electrical currents, this confirmation itself is in no 

way superfluous. Thus far, it already seems important that according to the experiments 

communicated in the preceding Sections, the Ampère reciprocal action has been proven as well for 

magneto-electric currents and by means of currents induced by means of voltaic induction. 

However, it seems still more important to repeat Ampère's fundamental experiment with static 

electricity, as it occurs in the discharge of a Leyden jar or battery by means of the applied discharge 

wire, since there are such considerable differences between this current of static electricity and all 

other galvanic currents, that only empirical experimentation can show, whether Ampère's 

fundamental experiment can hold good, or not. In particular, so long as empirical experimentation 

had not decided this question, one could easily conjecture, that either the extremely short duration 

of a current of static electricity, or, given a longer duration, the discontinuity of the current might be 

inherently obstructive to the reciprocal action of two long conducting wires, like those of the two 

coils of the dynamometer, because it would be possible that the current in one wire had already 

stopped again while it was just beginning in the other. Experimentation with the 

electrodynamometer has proven, however, that the fundamental Ampère experiment also succeeds 

with static electricity, of which I will now give a more precise account here. 

It is known, that the repetition of Oersted's fundamental experiment with the static 

electricity collected in a Leyden jar is made most reliably, when one end of a wet string is fastened 
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to the discharging rod, the other end to the conducting wire which forms the multiplier of the 

galvanometer, and the wire's other end is in a conducting connection with the outer coating of the 

Leyden jar. If the Leyden jar is then discharged with the discharging rod while the wet string hangs 

on it, a deflection of the magnetic needle is observed in that direction which can be predetermined 

by means of the electromagnetic laws. The use of a wet string is, however, not absolutely necessary 

to this fundamental experiment, but seems to be advantageous only when one wants to directly 

connect the wire ends of the multiplier of a sensitive galvanometer with the positive and negative 

conductor of an electrical machine. It is also not necessary to insulate the wires better than for other 

galvanic circuits. In the first case the use of a wet string was advantageous, because without it, the 

intensity of the discharge entails the danger of a confluence of the divided electricities which are 

collected in the battery, by other paths than through all the windings of the conducting wires. This 

danger is prevented by means of inserting a wet string, which diminishes the intensity of the 

discharge and nevertheless permits very large masses of electricity to unite with each other in a 

very short time through the conducting wire. 

Now, while the main point of performing Oersted's fundamental experiment with static 

electricity is simply to conduct very large masses of electricity through the multiplier, whereas the 

time in which the electricity goes through the wire, comes less into consideration, the successful 

execution of Ampère's fundamental experiment essentially rests instead on leading large masses of 

electricity in the shortest possible time through the conducting wire, for which, therefore, the 

collection of electricity in batteries and the discharge of the batteries by means of a wet string 

seems especially suited. The effect of equal masses of electricity is always the same in the first 

experiment, the amount of time of flow may be smaller or larger, as long as it does not become so 

large that it requires a considerable portion of the period of oscillation; with the latter experiment, 

however, in conformity with the preceding Section, the effect is to be inversely proportional to the 

transit time. Accordingly, it seems that the use of the Leyden jar along with a wet string must be 

considered as especially favorable, if not necessary, for our experiment, and hence I have in fact 

used both in my first experiments. 

Thus I joined together for this purpose two wire ends of the two coils of the dynamometer, 

and led one of the two other wire ends to the outer lining of a Leyden jar, the other to a wet string 

which was fastened onto the insulated discharging rod. The battery was charged, and lastly, the 

discharging rod was brought toward the metal knob which was connected with the interior lining of 

the battery. At the moment when the discharge of the battery through the wet string and through the 

dynamometer coils took place, the dynamometer, which had previously been at rest, was put into an 

oscillation, which often comprised an arc of several hundred scale units, of which several examples 

are to be presented forthwith. The observer standing at the telescope could easily determine the 

magnitude of the first elongation and the side toward which it occurred. 

If thereupon the experiment was repeated, by re-charging the Leyden jar or battery in the 

same manner, but with the difference, that the wire which was previously connected to the outer 

lining, was fastened to the end of the wet string of the discharging rod, and the other wire end was 

instead disconnected from the string and connected to the outer lining of the battery, then the effect 

was the same, not only with respect to the magnitude, but also with respect to its direction, so that, 

as with ordinary currents, no difference whatever took place in the effect of the positive and 

negative currents. And this direction of the deflection of the dynamometer as a result of the current 

of static electricity passing through, turned out to be like that which was already predetermined by 

means of Ampère's law. It is hereby proven, that the fundamental Ampère experiment can also be 

made with a current of static electricity. 

It was also of further interest, however, to test whether the use of the wet string was 

necessary or dispensable for the success of this experiment, as well as whether there might exist 

any cases at all, where the current of static electricity would yield Oersted's fundamental 
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experiment, but not Ampère's, or whether with respect to static electricity, both kinds of effects 

are always associated. For this purpose, more extensive series of experiments are required, than I 

have undertaken up to now; yet a few preliminary experiments may meanwhile be relevant. 

The earlier experiments were repeated, both utilizing the wet string and excluding it, and 

also in association with the electromagnetic experiments, by inserting the multiplier of a magnetic 

galvanometer into the same circuit which included the two coils of the dynamometer. The latter 

effect then served as a criterion and a metric, whether and how much electricity went through the 

wire circuit when the Leyden jar was discharged. When the wet string was excluded, in order to 

replace by other means the large resistance which it provided, a fine German silver [Argentan] wire 

of 0.3-millimeter diameter was wound around two glass columns 3.75 meters distant from each 

other, in such a way that the individual 7.5-meter-long windings were approximately 40 millimeters 

from each other, whereby they were completely insulated from one another. The German silver 

wire formed 32 such windings, and the end of this wire was now led freely through the air to the 

charged battery. In the following table I assemble the results of two series of experiments for 

comparison, namely, one in which the current went through the wet string, the other in which the 

wet string was excluded from the circuit. The electric battery consisted of 4 jars each of about 2 

square feet coated surface, which were charged moderately strongly and so uniformly in all 

experiments as could be discerned on the quadrant electrometer. The string was made of hemp, 320 

millimeters long, 4 millimeters thick, and was dipped in water before each experiment. 
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1. Discharge using the wet string: 

No. Elongation of galvanometer Elongation of  dynamometer 

 = e = ε  

1. 51.75 206.99 

2. 56.26 214.94 

3. 61.36 236.98 

4. 52.68 216.63 

5. 55.31 223.88 

2. Discharge using the wire circuit, without string: 

6. 7.06 0.85 

7. 7.04 0.85 

 

The observations on the galvanometer show that, if when using the string, all the electricity 

went through the circuit, without the string only 7 to 8 parts of it went through, according to which, 

under the presupposition, that the discharge without the string resulted faster, or at least not slower, 

than with the string, an effect would be expected of at least 50 parts of the previous amount of 

electrodynamic effect. This did not occur, however, but instead, as the comparison of the 

observations presented in the third column under ε  shows, the effect was almost six times smaller. 

Although this latter effect was so small, it was nevertheless clearly perceptible. 

The influence which the water exerted when the electricity was conducted through it, 

seemed to be susceptible of more precise investigation when the wet string was replaced with a 

glass tube filled with water. Hence a 1,200-millimeter-long, 13-millimeter wide empty glass tube 

was bent into a U shape and filled with water, inserted between the discharging rod and the rest of 

the circuit, and the earlier experiments repeated, yielding the following results, with the same 

charge in the battery as earlier, which prove that water contained in a glass tube could not replace a 

wet string in this case. 

 

Discharge with a glass tube filled with water: 

No. Elongation of galvanometer Elongation of dynamometer 

 = e ε=  

1. 4.68 3.23 

2. 4.50 1.57 

 

In vain were all precautionary measures which were taken in this experiment and in the 

preceding one with the exclusion of the wet string, in order to compel the electricity to take its path 

through the water in the tube, and thence through the German silver wire, in order to diminish the 

intensity of the charge by means of the resistance of these bodies, and to make all the electricity 

take its path through the instrument's conducting wires; only a slight portion of the electricity 

seemed to actually adopt the latter path. If, on the contrary, the glass tube was exchanged for a 

string of glass threads, this string, when it was externally moistened, performed comparable service 

to the wet string. The discharge through such a 500-millimeter-long string dampened with ammonia 

gave the following elongations on the galvanometer and dynamometer respectively: 

100.55   70.35. 

The electricity coming out of a Leyden jar seems to especially spread on the surface of the 

body, and therefore a moist conductor seems to have more effect, when it externally covers the 

surface of this body, than when it is enclosed. 
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Lastly, the results of a series of experiments performed with the wet string may be 

relevant, in which a battery of 8 jars just like the ones used earlier, and a hemp string of 7 

millimeters thickness and 2,000 millimeters length was inserted; this length, however, was 

gradually shortened to 125 millimeters. 

 

Length of string Elongation of 

galvanometer = e 

Elongation of 

dynamometer ε=  ε

2e
 

2 000 mm 79.9 65.6 97.3 

1 000 mm 76.6 153.0 38.3 

500 mm 82.3 293.8 23.0 

250 mm 87.3 682.0 11.2 

125 mm 93.2 out of scale  

250 mm 82.9 609.1 11.3 

500 mm 95.6 422.8 21.6 

1 000 mm 95.8 210.1 21.6 

2 000 mm 101.5 98.0 105.0 

 

It may be further noted, that, when the string was dipped into dilute sulphuric acid, a discharge of 

the battery gave a deflection of 83 scale units on the galvanometer, while the deflection on the 

dynamometer itself was too large, when the string length was 2,000 millimeters, to be measured on 

the scale. 

It is easily seen, that a broad field of interesting experiments stands open here, which I have 

not further pursued, because of the need to subject the amount of electricity in the battery used for 

the experiments to a direct precise measurement, according to the model given by Ries in his 

electrical experiments, for which I do not currently have at my disposal the appropriate equipment, 

and therefore I am postponing this work to a more favorable time. 

Meanwhile, however, the last series of experiments performed already shows, apart from 

the strength of the effects, such a degree of regularity, that it becomes probable that, in discharging 

the Leyden battery by means of a wet string, all the electricity in fact goes through the conducting 

wire and forms a current in it which might be comparable in continuity to the current of a galvanic 

battery.
31

 Were this the case, one could make an important application of the preceding 

observations, by applying to them the rules developed in Section 13, in order to determine the 

duration of the current which may be considered as equal to the duration of the discharge spark, 

according to an absolute time metric. It is well known that Wheatstone effected the determination 

of the duration of the discharge spark in a completely different manner, and it would be interesting 

to compare with each other the results found in such different ways. In order to reduce to an 

absolute time metric the relative time metric which we have already included for the above 

experiments themselves in the column headed ε/2e , it requires, according to page 68,
32

 simply an 

experiment with a constant current passing through both instruments, which I have carried out for 

this purpose, and have found that the values for ε/2e  in the table above are to be divided by  

1,188, 

                                                 
31

  [N. A.] Electrodynamic experiments can be arranged with two dynamometers in such a way that the electricity is 

conducted successively in one, simultaneously in the other, through the fixed and suspended coils. By comparing the 

results for both instruments, when a battery is discharged through them, it would be possible to investigate more 

precisely the continuity or discontinuity of the current. 
32

  [N. E.] Page 114 of Weber’s Werke, Vol. 3. 
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in order to obtain the duration of the current in seconds. The following table is calculated 

accordingly: 

 

Length of string Duration of spark 

Millimeters Seconds 

2 000 0.081 9 

1 000 0.032 2 

500 0.019 3 

250 0.009 4 

250 0.009 5 

500 0.018 2 

1 000 0.036 8 

2 000 0.088 3 

 

or in mean values: 

 

Length of string Duration of spark 

Millimeters Seconds 

2 000 0.085 1 

1 000 0.034 5 

500 0.018 7 

250 0.009 5 

 

It follows that the duration of the spark is almost proportional to the length of the string, as the 

following overview of the thus calculated values and their difference from the observed values 

proves: 

 

Length of string Calculated duration of spark Difference from observed 

value 

Millimeters Seconds Seconds 

2 000 0.081 6 - 0.003 5 

1 000 0.040 8 + 0.006 3 

500 0.020 4 + 0.001 7 

250 0.010 2 + 0.000 7 

 

If one compares the results found by Wheatstone, according to which the duration of the spark by 

discharges merely through a metallic conductor, is negligibly small in relation to the duration found 

here, then this stands in complete accord with the proportionality found here between the duration 

of the spark and the length of the wet discharge string. In any case, the fact that the motion of the 

electricity in water occurs so slowly, that the time it requires for the short path of 2 meters amounts 

to roughly 1/12 seconds, merits particular attention. Apart from the objection derived from the 

discontinuity of the currents of static electricity (which was already discussed above, and which 

may be largely diminished or entirely eliminated by means of the influence of the water), it could, 

of course, be objected against the application of the rule by which these time determinations were 

made, that the current is most intense in the first moments, and will gradually decline, while the 

above rule can only be applied with precision, when the current always possesses the same intensity 

during its short duration. If, however, one empirically finds, in this case as well, not the true 

duration, but that duration which would correspond to a mean current strength, the value of the 
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determination may lose little on this account, because it will generally be of more interest to 

know the latter duration, than the former. It is also noteworthy that for the same reasons, a similar 

difference was occasioned in Wheatstone’s determination of the duration of the spark, because the 

spark was extended in a line which as a result of that decrease gradually dispersed without sharp 

delimitation. 

 

15. 

 

Two investigations in the field of pure electrical theory are still to be presented here, for 

which the use of the dynamometer opens a new path; however, I will not go more precisely into 

these investigations for the present, because the necessary experiments are still lacking, in order to 

demonstrate conjointly the method and the results obtained by it. These two investigations concern: 

1) the determination of the velocity of the propagation of currents, for which up to now 

merely a few experiments by Wheatstone are in hand, which, however, according to 

Wheatstone's own statement, have still not led to any certain results; 

2) the determination of the electromotive force of a galvanic circuit, independent of the 

polarization of its plates. 

The first application requires that the bifilar coil is separated from the fixed coil by means of 

long conducting wires, and in this long circuit a current is produced, whose direction changes as 

fast as Wheatstone's mirror is rotated. The use of the dynamometer, by comparison with 

Wheatstone's method, provides the advantage of using galvanic currents instead of common 

electricity, and the circuit is never interrupted, which was necessary for Wheatstone for producing 

the spark. The latter application is based on the measurement of momentary currents according to 

Section 13. 

 

16. 

 

Application of the dynamometer to measurement of the intensity of sound vibrations. 

 

It still remains, to describe an application of the dynamometer to researches in another 

domain of physics, which seems to have a special interest associated with it, because it casts a 

bright light on a specific aspect of what can be done with this instrument. We possess 

extraordinarily refined galvanoscopes, with which we are in a position to discover and investigate 

even the weakest currents found in Nature. We need merely recall the fine work of Melloni, in 

order to place the greatest weight for science in general upon the use of these refined instruments 

and the traces of electrical motions which we find by means of them. Despite this refinement in the 

instruments, however, in many cases success has not been achieved in demonstrating electrical 

currents everywhere we surmise that they exist, perhaps because those instruments, despite their 

refinement, were not suited to the purpose. This reason deserves all the more consideration, in that 

one sort of current can be demonstrated and exactly described, to which even the finest instruments 

are insensitive, in the nature of the case. This occurs, when we are dealing with an alternating 

current, which in very short sequential time intervals constantly changes its direction. The 

alternating opposite actions of the current on the most sensitive magnetic needle must cancel each 

other, if the magnetism of the needle always remains the same. The phenomena observed by 

Poggendorff (Annalen 1838, Vol. LXV, page 355 ff.), in which this does not seem to occur, 

originate from a changeability in the needle's magnetism, and, given a very accelerated change in 

current, would disappear again. Such currents, whose direction changes very rapidly, can thus exist 

to a great extent in Nature, without us having an inkling of their existence, because we possess no 

way to discover them. And it is not at all improbable, that such currents exist, for the movement of 
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electricity in them would differentiate itself from the movement of electricity in the usual 

currents, only by the fact that the former consists of an oscillation, while in the latter, the motion of 

the electricity is progressive. Since the progressive motion of electricity occurs so abundantly in 

Nature, it is not obvious why, given such great mobility occasional conditions should not also 

occur, which favor a vibrating movement. If, e.g., light undulations exert an effect on the electrical 

fluids, and have the power to disturb their equilibrium, it would certainly be expected that these 

effects of light undulations would be structured in time with the same periodicity as the light 

undulations themselves, so that the result would consist of an electrical vibration, which, however, 

we are unable to discover with our instruments. Now, the undulations of light occur so rapidly, that, 

if the vibrations they elicit follow an equally rapid alternation, we could scarcely hope to observe 

their effects with any instrument. Slower vibrations also occur in Nature, however, e.g. acoustical 

ones, and hence the question arises, whether there are not electrical motions in Nature whose origin 

is due to them, and if there are such motions, in what way we could discover and investigate them. 

I want to give at least one example here of such electrical vibrations, elicited by sound 

vibrations, and provide the actual proof of how such electrical vibrations can be observed and 

investigated with the help of the dynamometer, and how the measurable effects of these electrical 

vibrations can in turn be used to elucidate the sound vibrations from which they originate, and 

thereby to open a new path for many acoustical investigations, for which we still altogether lack 

suitable means of measuring the intensity of sound vibrations. 

In fact, the peculiarity of the dynamometer, which most characterizes it and distinguishes it 

from all other galvanometers, consists in the fact, that it is indifferent to the direction of the current 

acting upon it, while other galvanometers undergo opposite effects, given opposite directions of the 

currents. Attention was already called to this in Section 13 above. We can express this succinctly 

by saying that the dynamometer with respect to constant currents gives a measure for the square of 

the current intensity, while other galvanometers provide a measure for the current intensity itself. 

From this characteristic property of the dynamometer, it is now obvious, that the rapidly 

successive actions of the opposed currents do not, as in an electromagnetic galvanometer, cancel 

each other, but rather must be additive; and that in virtue of its nature the dynamometer 

consequently finds its true purpose in bringing to light such otherwise unobservable currents. 

Now, the sound vibrations are mostly, of course, contained in such narrow, almost 

microscopic boundaries, that we can scarcely hope to use them to elicit electrical vibrations whose 

boundaries have the breadth necessary to register an effect upon the dynamometer. If, however, we 

calculate the absolute velocities, with which the resonating bodies move in the middle of their 

vibrations, it turns out that these velocities, considering the short duration of the vibrations, are not 

entirely inappreciable, despite the small oscillation curves, but often amount to a foot or more in 

one second. Building upon this, I have carried out an experiment so that it seemed the first to be 

capable of producing results. I prepared a sounding-rod of steel (aaa, Figure 13) and let it harden,  
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magnetized it, and fastened its nodal lines at the end-points b, b, b', b' between screw-heads as 

axes of rotation, as I have described in Poggendorff's Annalen 1833, Vol. XXVIII, page 4,33 and 

divided it into three sections simultaneously vibrating toward opposite sides. Hence the two end 

sections made their vibrations simultaneously in the same direction, alternately upward and 

downward. The free magnetism, which is disseminated in these rods, can be thought of as 

disseminated on the surface of the rod, according to Gauss's ideal distribution, which represents the 

actual distribution in all outward effects; and, specifically in the case of strong magnetization, the 

free north magnetism must be thought of as almost entirely on the surface of one vibrating end-

section, the free south magnetism almost entirely on the surface of the other vibrating end-section, 

and indeed the closer to the end, the greater the concentration, i.e., exactly the most [magnetism] 

where the sound vibrations are the greatest. I wound these two vibrating end-sections with strong 

inductors ccc and c'c'c' made of fine copper wire, which, however, never touched the rod, so that its 

vibrations would not be inhibited. In addition, there was a gap in the windings on the sides of the 

inductors turned toward each other, through which the ends of the rod were inserted into the 

inductors. The windings of the inductors were parallel to each other and lay in a plane 

perpendicular to the sound vibrations of the sounding-rod. The two inductors were connected to 

each other with two of their wire ends dddd, so that they formed spirals wound in opposite 

directions. Their two wire ends ee and e'e' were connected with two wire ends of the fixed and 

moveable coils of the dynamometer, whose other two wire ends were connected to each other. The 

dynamometer was completely at rest. After everything had been prepared in this way, the sounding-

rod was made to vibrate strongly by means of a sharp rap at its midpoint with a soft clapper. There 

appeared at once a deflection of the bifilar coil of 20 to 30 scale units, and thereupon, when the 

maxima and minima of the vibration curve of the bifilar coil, which was vibrating from then on, 

were recorded, it was seen, that the state of rest calculated from this, around which the vibration 

occurred, was altered, but that it quickly returned again to its original state as the sound vibrations 

decreased in strength. I would note that I elongated the bifilar coil by several hundred scale units, 

letting the sounding-rod vibrate only so long, as the elongation was increasing, while on the other 

hand I deadened the sounding-rod, while the bifilar coil swung back again, and struck the 

sounding-rod again as soon as the bifilar coil began to move in the original direction, and so forth. 

It hardly need be mentioned, that if more precise determinations of the intensity of sound 

vibrations are really to be obtained according to the method presented, the sounding-rod cannot be 

put into vibration by means of a clapper stroke, because the intensity of the vibrations elicited in 

this way decrease very quickly and almost entirely disappear; but they must be maintained in a state 

of constant vibration for a longer time by means of a continually adjusted intervention. 

It can safely be presumed, that the electrical vibrations which are actually demonstrated, 

take place under the conditions in which we made our observations; hence it was only a question of 

testing the method by which such vibrations are made observable. After this method has been 

found to be proven, however, one can further build upon it, and it is certain that using this method 

will lead to the discovery of electrical vibrations under previously unthought-of conditions. To 

illustrate the manifoldness of these phenomena, the following experiment may be cited here. If a 

strong galvanic current is introduced close to a vibrating string, which forms a component of a wire 

circuit running back into itself, then as a result of that vibration, alternating positive and negative 

currents are induced in the circuit, whose intensity can be measured with the dynamometer, 

similarly to the way it is induced by the vibrating magnetized rod. 

 

17. 

 

                                                 
33

  [N. H. W.] Wilhelm Weber's Werke, Vol. I, page 367. 



 78 

On various constructions of the dynamometer. 

 

There are essentially three different constructions which can be given to the dynamometer, 

all of which are suited to exact measurements, and provide special advantages under differing 

conditions. In addition to the first construction, which has been applied up to now, a second 

presents itself almost automatically to begin with, since it is already frequently used, with regard to 

its most essential components, for observing the effects of the Earth's magnetism on a conductor. 

Specifically, for this purpose, a conductor wound in circles, together with the battery from which 

the current issued, was hung up on a thread or wire, like a magnet, and the rotational moment 

which the Earth exerts on this kind of closed circuit, was observed in the same way as on a 

suspended magnetic needle. In fact, this apparatus provides a rotatable conductor, whose 

oscillations and deviations can be observed with as great a refinement as those of our bifilar coil, 

and it is only necessary to surround the suspended battery with a fixed multiplier, through which a 

current likewise moves, in order to complete the dynamometer. Now, add to this the fact that the 

discovery of constant batteries by Daniell and Grove has paved the way for more refined 

applications of such an instrument, which was previously blocked by the variability of the currents. 

For this a small Grove’s element is particularly suited, which, considering its small dimensions and 

low weight, provides a fairly strong and constant current. If mirror, telescope, and scale are added, 

the most refined observations can be carried out with this instrument. Figure 14 depicts such an 

instrument, as used by me for this purpose. A is the wire wound around in a ring, whose ends are 

connected by means of brass couplings ab and a'b' to the platinum and zinc poles of a small 

Grove’s element B from the instrument-maker Kleinert in Berlin. This element rests on a wooden 

stand, whose upper part is equipped with a torsion ring C, to which the suspension filaments are 

fastened at D. 

 

 
 

However suitable this construction of the dynamometer may be for a few special purposes, 

nonetheless it is far from able to replace the first construction, because it lacks two properties which 

the dynamometer with the bifilar coil possesses, and which are based on the fact that the current 

going through the bifilar coil can be further conducted, both through the fixed coil serving as 

multiplier, and through any other conductor as well. The first property consists in the fact that this 
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dynamometer can be used together with a galvanometer, by means of which an independent 

measurement of the intensity of the current in the bifilar coil can be obtained, which is not the case 

with the other instrument, because there the current from the suspended battery can not be drawn 

off through the multiplier of a galvanometer. However, the simultaneous observations on the 

galvanometer and dynamometer permit us to reduce the electrodynamic effects to the same current 

intensity, as repeatedly occurred in the previous undertakings. The lack of this property is not 

completely overcome by the use of constant batteries, because the current intensity even in such 

batteries is still always subject to considerable variations, which can in no way be disregarded in 

the course of more precise determinations. 

The second property consists in the fact that, by letting the currents to be investigated with 

the dynamometer pass through both coils, the fixed coil as well as the rotatable one, one can 

determine the square of the current intensity, which is independent of the direction of the current. 

On this was based the peculiar characteristic of the instrument, which made it possible, in 

association with the electromagnetic galvanometer, to provide the elements necessary for 

knowledge of momentary currents. See Section 13 above. The other instrument whose rotatable coil 

formed a suspended, self-contained battery, also lacked this property; for here the different currents 

to be investigated can simply be brought through the conducting wire of the fixed coil, while the 

current in the rotatable coil remains unchanged, whereupon the effect of the current intensity, as 

with an electromagnetic galvanometer, is proportional to the current intensity itself, and 

consequently the instrument is capable of simply serving the role of an electromagnetic 

galvanometer, but not of supplementing it. 

I now proceed to the third construction of the dynamometer, which, in that it shares the 

most essential properties of the first, is suited to give to electrodynamic measurements a still greater 

expansion, especially in cases where the first fails us because of the necessary fineness of the 

suspension wires through which the current is conducted. 

This third construction is based on the same principle, which I have developed in the 

Commentat. Soc. Reg. Sc. Gottingensis recentiores, Vol. VIII,
34

 for the purpose of describing a 

perfectly rotatable, friction-free balance scale, namely, on the principle of compensation between 

gravity and elasticity. There I hung the horizontal balance beam on two elastic vertical springs. 

These springs bent, of course, when the balance beam was turned, and thus, the more the beam was 

turned, the more they sought by means of their elastic force to inhibit the rotation; but if the 

rotation of the balance beam took place around an axis, which lay lower than its center of gravity, 

then, when the balance beam was rotated, the more the balance beam was rotated, the more the 

force of gravity sought to accelerate the rotation, and it turned out that, in this construction, the 

inhibiting influence of elasticity and the accelerating influence of gravity balanced each other, and 

consequently the beam remained firmly in balance not merely in a horizontal position, but also in 

an inclined position, and, without becoming hampered by friction, was able to switch from one of 

these positions to the other at the slightest impulsion. 

I now used this kind of compensated balance beam for the dynamometer, and thereby 

replaced the rotatable coil, by making the same use of the two suspension springs to feed in and 

draw off the current, as I make of the two suspension wires. These springs are especially preferable 

to those fine wires, when it is a question of high-intensity currents, which should not be conducted 

through fine wires. It is sufficient to put the current through the strongest and shortest possible 

circuit; then the balance beam, through which this current is to pass, consists of a moderately long 

bar, held up by one of those two springs, to which bar, however, a mirror for more refined 

observation is attached. Finally, the fixed coil is replaced for the same reason with another 

moderately long fixed bar, by means of which the galvanic current is likewise conducted, and 

                                                 
34

  [N. H. W.] Wilhelm Weber's Werke, Vol. I, page 497. 
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which then acts on that rotatable bar, and deflects it, like a balance scale. The sensitivity of this 

instrument primarily depends on the two bars (the fixed one and the rotatable one) being placed 

parallel to each other at a slight distance apart. I have designed this instrument above all to give a 

greater range to electrodynamic experiments with static electricity, by rendering dispensable the 

special conditions which were necessary to achieve a truly reliable discharge in a Leyden jar 

through the many windings of the two coils of the first dynamometer. As yet, this latter instrument 

has not been perfected to the degree necessary for such a series of experiments. 

Before I conclude this Section on the construction of the dynamometer, I wish to add 

another remark about its transformation into a magnetic galvanometer. I have already mentioned, 

that the wholly self-contained, suspended battery used for the second construction described above, 

was used earlier in electromagnetic experiments, specifically in order to observe the influence of 

Earth magnetism on a current conductor. With this self-contained suspended battery, if one were 

able to fully rely on the constancy of its current, all experiments on, and measurements of, Earth 

magnetism could be carried out exactly as with the magnetometer, and to that extent it would 

warrant the name of a galvanic magnetometer. Our first dynamometer, on the other hand, could be 

used as a magnetic galvanometer, which offers great advantages, even in comparison with a 

magnetometer equipped with a multiplier, if it is a question of absolute, not merely relative, 

determination of current intensity. The current conductor is in a fixed position with respect to the 

magnetometer equipped with a multiplier, and the magnet is rotatable; however, there is no 

essential influence on the effect, when one reverses this relationship and fixes the magnet, while the 

conductor is rotatable. The coil of our dynamometer, suspended by two wires, can now serve as the 

rotatable conductor, and the Earth itself can be used as the fixed magnet (which substitutes here for 

the fixed coil). However, if the Earth is now to actually perform this role, the bifilar coil must be 

oriented in a different way, namely, instead of being oriented like a declination magnetometer, as it 

was earlier, so that its axis is parallel to the magnetic meridian, it must be oriented, like the 

intensity magnetometer, so that its axis is perpendicular to the magnetic meridian. It can then be 

called a magnetic bifilar galvanometer. This simple instrument then presents great advantages for 

the absolute determination of current intensity, precisely because the position and distance apart of 

the individual components of the conducting wire compared with the individual components of the 

magnets no longer need be taken into account, because of the great distance at which the Earth 

magnetism acts, and hence, what is required for the purpose of this absolute determination of 

current intensity, in addition to the knowledge of the Earth magnetism, the deflection, the period of 

oscillation, and the inertial moment, in terms of absolute measure, is only the knowledge of one 

single element, namely, knowledge of the area surrounded by the wire, as I have already discussed 

in the “Resultaten aus den Beobachtungen des Magnetischen Vereins im Jahre 1840,” page 93,35 

where I have communicated several such determinations of intensity according to absolute 

measure, which were made with this instrument. 

Hitherto, the investigation primarily had the purpose of leading to experimental paths to 

determinations of measure for electrodynamic forces, and to expressing those forces according to 

the absolute measure, reduced to measure of space, time, and mass. This was the motivation for the 

construction given to the instruments, which, as in the case of Gauss's magnetometer, lays claim to 

a more solid arrangement and a greater scope than is called for by other physical apparatus, in 

which the scale of measurement is directly mounted on the instrument to be observed. Given the 

appropriate construction, it was possible to carry out larger individual series of experiments with 

precision; this construction, however, is not so easily altered again and adjusted to different kinds 

of purposes. In this connection I must acknowledge, as an especially favorable circumstance, that 

the spaciousness of the Leipzig Physics Institute was on the whole advantageous for this 
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construction; nevertheless, as mentioned several times, I had to confine myself for the present to 

preliminary experimental tests, because not all the constructions could be adequately manufactured 

in the same way. In consideration of these external constraints, present elsewhere still more than 

here, and because many experimenters are less accustomed to make observations with such 

instruments, I commissioned the local instrument-maker Mr. Leyser to complete smaller portable 

instruments for easier and more convenient manual use, without catoptric equipment, in the usual 

simple manner with pointer and subdivided circular scale, which suffice for conducting most 

experiments and for ordinary measurements. I call these smaller instruments to the attention of 

those who wish to engage in similar experiments, under conditions which do not permit the use of 

the instruments described. 

 

On the Connection between Electrostatic and Electrodynamic Phenomena with Application to 

Electrodynamic Measurements. 

 

18. 

 

Since the fundamental law of electrodynamics put forward by Ampère is found to be fully 

confirmed by precise measurements, the foundations of electrodynamics could perhaps be 

considered as definitively established. This would be the case, if all further research consisted of 

nothing but developing the applications and results which can be based on that law. For, granted 

that we could inquire into the connection, which exists between the fundamental laws of 

electrodynamics and electrostatics, yet, however interesting it may be, and however important for a 

more precise acquaintance with the nature of bodies, to have investigated this connection, nothing 

further would have been yielded for the explanation of electrodynamic phenomena, if these 

phenomena have really found their complete explanation in Ampère's law. In short, essential 

progress for electrodynamics itself would not be achieved by reducing its fundamentals to the 

fundamentals of electrostatics, however important and interesting such a reduction might be in 

other respects. 

This view of the conclusions which the fundamentals of electrodynamics has reached 

through Ampère's basic law and its confirmation, essentially presupposes, however, that all 

electrodynamic phenomena are actually explained by that law. If this were not the case, if there 

existed any class of electrodynamic phenomena, which it does not explain, then that law would 

have to be considered merely as a provisional law, to be replaced in future by a truly universally 

valid, definitive law applicable to all electrodynamic phenomena. And in that case it could well 

occur, that this definitive law would be arrived at, by first seeking to reduce Ampère's law to a 

more general one, encompassing electrostatics. Namely, it would be possible that, under different 

conditions, the law of the remaining electrodynamic phenomena, which could not be directly traced 

to Ampère's law, would emerge out of the same sources from which both the electrostatic law and 

Ampère's law were derived, and that the foundation of electrodynamics in its greatest generality, 

would then be represented, not in isolation per se, but solely as dependent on the most general law 

of electricity, subsuming the foundation of electrostatics. 

Now, in fact, there does exist such a class of electrodynamic phenomena, which, as we 

assume throughout this Treatise, depend on the reciprocal actions which electrical charges exert on 

each other at a distance, and which are not included in Ampère's law and cannot be explained by it, 

namely, the phenomena of Volta-induction discovered by Faraday, i.e., the generation of a current 

in a conducting wire through the influence of a current to which it is brought near; or the 

generation of a current in a conducting wire, when the intensity of the current in another nearby 

conducting wire increases or decreases. 
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Ampère's law leaves nothing to be desired, when it deals with the reciprocal actions of 

conducting wires, whose currents posses a constant intensity, and which are fixed in their positions 

with respect to one another; as soon as changes in the intensity of the current take place, however, 

or the conducting wires are moved with respect to one another, Ampère's law gives no complete 

and sufficient account; namely, in that case, it merely makes known the actions which take place on 

the ponderable wire element, but not the actions which take place on the imponderable electricity 

contained therein. Therefore, from this it follows, that this law holds only as a particular law, and 

can be only provisionally taken as a fundamental law; it still requires a definitive law with truly 

general validity, applicable to all electrodynamic phenomena, to replace it. 

We are now in a position, to also predetermine in part the phenomena of Volta-induction; 

however, this determination is based, not on Ampère's law, but on the law of magnetic induction, 

which can be directly derived from experience, and which up to now has had no intrinsic 

connection with Ampère's law. And that predetermination of Volta-induction is in fact able to 

proceed, not through a strict deduction, but according to a mere analogy. Since such an analogy can 

indeed give an excellent guideline for scientific investigations, but as such must be deemed 

insufficient for a theoretical explanation of phenomena, it follows that the phenomena of Volta-

induction are still altogether lacking theoretical explanation, and in particular have not received 

such explanation from Ampère's law. In addition, that predetermination of the phenomena of Volta-

induction merely extends to those cases, where the inductive operation of a current, by analogy 

with its electrodynamic operation, can be replaced by the operation of a magnet. This, however, 

presupposes closed currents whose form is invariable. We can, however, claim, with the same 

justification as Ampère did for his law with respect to the reciprocal action of constant current 

elements, that the law of Volta-induction holds true for all cases, in that it gives a general 

determination for the reciprocal action of any two smallest elements, out of which all measurable 

effects are composed and can be calculated. 

Thus, if we take up the connection between the electrostatic and electrodynamic 

phenomena, we need not simply be led by its general scientific interest to delve into the existing 

relations between the various branches of physics, but over and above this, we can set ourselves a 

more closely defined goal, which has to do with the measurement of Volta-induction by means of a 

more general law of pure electrical theory. These measurements of Volta-induction then belong to 

the electrodynamic measurements which form the main topic of this Treatise, and which, when they 

are complete, must also include the phenomena of Volta-induction. It is self-evident, however, that 

establishing such measurements is most profoundly connected with establishing the laws, to which 

the phenomena in question are subject, so that the one can not be separated from the other. 

 

19. 

 

In order to obtain for this investigation the most reliable possible guideline based on 

experience, the foundation will be three special facts, which are in part based indirectly on 

observation, in part contained directly in Ampère's law, which is confirmed by all measurements. 

The first fact is, that two current elements lying in a straight line which coincides with their 

direction, repel or attract each other, according to whether the electricity flows through them in the 

same or opposite way. 

The second fact is, that two parallel current elements, which form right angles with a line 

connecting them, attract or repel each other, according to whether the electricity flows through 

them in the same or opposite way. 

The third fact is, that a current element, which lies together with a wire element in a straight 

line coinciding with the directions of both elements, induces a like- or opposite-directed current in 

the wire element, according to whether the intensity of its own current decreases or increases. 
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These three facts are, of course, not directly given through experience, because the effect 

of one element on another can not be directly observed; yet they are so closely connected with 

directly observed facts, that they have almost the same validity as the latter. The first two facts 

were already comprehended under Ampère's law; the third was added by Faraday's discovery. 

The three adduced facts are considered as electrical, viz., we consider the indicated forces 

as actions of electrical masses on each other. The electrical law of this reciprocal action is still 

unknown, however; for, even if the first two facts are comprehended under Ampère's law, 

nevertheless, even apart from the third fact, which is not comprehended by it, Ampère's law is 

itself, in the strict sense, no electrical law, because it identifies no electrical force, which an 

electrical mass exerts on the other. Ampère's law merely provides a way to identify a force acting 

on the ponderable mass of the conductor. Ampère did not deal with the electrical forces which the 

electrical fluids flowing through the conductor exert on one another, though he repeatedly 

expressed the hope that it would be possible to explain the reciprocal effect of the ponderable 

conductors identified by his law, in terms of the reciprocal actions of the electric fluids contained in 

them. 

If we now direct our attention to the electrical fluids in the two current elements themselves, 

we have in them like amounts of positive and negative electricity, which, in each element, are in 

motion in an opposing fashion. This simultaneous opposite motion of positive and negative 

electricity, as we are accustomed to assume it in all parts of a linear conducting wire, admittedly 

can not exist in reality, yet can be viewed for our purposes as an ideal motion, which, in the cases 

we are considering, where it is simply a matter of actions at a distance, represents the actually 

occurring motions in relation to all the actions to be taken into account, and thereby has the 

advantage, of subjecting itself better to calculation. The actually occurring lateral motion through 

which the particles encountering each other in the conducting wire (which latter forms no 

mathematical line) avoid each other, must be considered as without influence on the actions at a 

distance, hence it seems permissible for our purpose, to adhere to the foregoing simple view of the 

matter (see Section 31). 

We have, then, in the two current elements we are considering, four reciprocal actions of 

electrical masses to consider, two repulsive, between the two positive and between the two negative 

masses in the current element, and two attractive, between the positive mass in the first and the 

negative mass in the second, and between the negative mass in the first and the positive mass in the 

second. 

Every two repulsive forces would have to be equal to these two attractive forces, if the 

recognized laws of electrostatics had an unconditional application to our case, because the like, 

repulsive masses are equal to the unlike, attractive masses, and act on one another at the same 

distance. Whether those recognized electrostatic laws, however, find an unconditional application 

to our case, can not be decided a priori, because these laws chiefly refer only to such electrical 

masses, which are situated in equilibrium and at rest with respect to one another, while our 

electrical masses are in motion with respect to one another. Consequently, only experience can 

decide, whether that electrostatic law permits such an enlarged application to our case as well. 

The two first facts adduced above refer, of course, chiefly to forces, which act on the 

ponderable current carriers; we can, however, consider these forces as the resultants of those 

forces, which act on the electrical masses contained in the ponderable carrier. Strictly speaking, 

that way of considering these forces is, to be sure, only permissible, when these electrical masses 

are bound to their common ponderable carrier in such a way, that they cannot be put in motion 

without it, and because this is not the case in the galvanic circuit, but on the contrary, the electrical 

masses are also in motion when their carrier is at rest, Ampère, as is stated in the introduction on 
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page 3,
36

 particularly called attention to this circumstance, with the consideration that the force 

acting on the ponderable carrier could thereby be essentially modified. Although, however, the 

electrical masses are susceptible of being displaced in the direction of the conducting wire, they are 

in no way freely moveable in this direction; otherwise they would have to persist in the motion 

once it were transmitted to them in this direction, without a new external impetus (that is, without 

ongoing electromotive force), which is not the case. For no galvanic current persists of itself, even 

with a persistent closure of the circuit. Rather, its intensity at any moment corresponds only to the 

existing electromotive force, as determined by Ohm's law; thus it stops by itself, as soon as this 

force disappears. From this it follows, that not simply those forces, which act on the electrical 

masses in such directions (perpendicular to the conducting wire) that the masses can only be moved 

in tandem with the ponderable carrier, have to be transmitted to the latter, but that this very fact 

also holds true even of such forces, which act in the direction of the conducting wire and which 

move the electrical masses in the carrier, only with the difference, that the latter transmission 

requires an interval of time, although a very short one, which is not the case for the former. The 

direct action of the forces parallel to the conducting wire consists, to be sure, simply of a motion of 

the electrical masses in this direction; the effect of this motion is, however, a resistance in the 

ponderable carrier, by means of which, in an immeasurably short time, it is neutralized once more. 

Through this resistance, during the time interval in which this motion is neutralized, all forces, 

which had previously induced this motion, are indirectly transmitted to the ponderable bodies 

which exercise the resistance. Finally, since we are dealing with the effects of forces, which have 

the capacity to communicate a measurable velocity to the ponderable carrier itself, then on the 

other hand, those effects of forces, which only momentarily disturb the imponderable masses a 

little, can be disregarded with the same justification with which we disregard the mass of the 

electricity compared with the mass of its ponderable carrier. From this, however, it follows, that the 

force acting on the current carrier acts, as stated above, as the resultant of all forces acting on the 

electrical masses contained in the current carrier. 

This presupposes, as shown by the first two facts stated above, that the resultant of those 

four reciprocal actions of the electrical masses contained in the two current elements under 

consideration, which, according to the electrostatic laws, ought to be zero, departs more from zero, 

the greater the velocity, with which the electrical masses flow through both current elements, that 

is, the greater the current intensities. 

From this it follows, therefore, that the electrostatic laws have no unconditional application 

to electrical masses which are in motion with respect to one another, but on the contrary, they 

merely provide for the forces, which these masses reciprocally exert upon each other, a limiting 

value, to which the true value of these forces approximates more closely, the slighter the reciprocal 

motions of the masses, and from which, on the contrary, the true value is more divergent, the 

greater the reciprocal motions. To the values, which the electrostatic laws give for the force exerted 

by two electrical masses upon one another, must thus be added a complement dependent upon their 

reciprocal motion, if this force is to be correctly determined, not simply for the case of mutual rest 

and equilibrium, but universally, including any arbitrary motion of the two masses with respect to 

one another. This complement, which would confer upon the electrostatic laws a more general 

applicability than they presently possess, will now be sought. 

The first fact stated above further shows, not simply that the sum of the repulsive forces of 

like electrical masses in the current elements under consideration diverges from the sum of the 

attractive forces of unlike masses, but also shows, when the first sum is greater and when it is 

smaller than the latter, and all determinations resulting therefrom can be unified in the simple 

statement, 
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that the electrical masses, which have an opposite motion, act upon one another more 

weakly, than those which have a like motion. 

 

For, 1) if the direction of the current is the same in the two elements, then repulsion occurs, 

consequently the attractive force of the unlike masses must be weaker than the repulsive forces of 

the like masses. In this case, however, it is the unlike masses, which are in opposite motion. If, 

however, 2) the direction of the current in the two elements is opposite, then attraction occurs; 

consequently the repulsive forces of the like masses must be weaker than the attractive forces of the 

unlike masses. In this case, however, it is the like masses, which are put into opposite motion. In 

both cases it is thus the masses in opposite motion, which act more weakly upon one another, 

confirming the statement above. 

The first fact, to which the statement above was referred, further permits the following, 

more precise, determination to be added, 

 

that two electrical masses (repulsive or attractive, according to whether they are like or 

unlike) act more weakly upon one another, the greater the square of their relative 

velocity. 

 

The relative velocity of two electrical masses can, if r denotes the distance between the two masses, 

be expressed as dr/dt, and is positive or negative, according to whether the two masses are 

withdrawing from or approaching one another; since, however, this difference between approach 

and withdrawal, or, in short, the difference of the sign for dr/dt, has no influence upon the 

magnitude of the force, it was necessary in the just-stated rule to introduce, instead of the relative 

velocity itself, its square. 

If we denote by e and e' the positive electrical masses in both elements, and by u and u' their 

absolute velocities, which have a positive or negative value according to the direction of the 

current, then -e and -e' will be the negative masses, and -u and -u' their absolute velocities. In the 

cases subsumed by the first fact, where all electrical masses are in motion in one and the same 

straight line, the relative velocities, however, result from the absolute by means of simple 

subtraction, namely, for the like masses: 

e+  and 'e+  the relative velocity 'uu
dt

dr
−= , 

e−  and 'e−  the relative velocity 'uu
dt

dr
+−= ; 

for the unlike masses: 

e+  and 'e−  the relative velocity 'uu
dt

dr
+= , 

e−  and 'e+  the relative velocity 'uu
dt

dr
−−= . 

From this results, according to the foregoing principle of the reciprocal action of like (two positive, 

as well as two negative) masses, a diminution dependent upon
37
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in comparison with the case considered in electrostatics, of rest and equilibrium; for the 

reciprocal action of unlike masses, on the contrary, a decrease dependent upon 

( )2

2

2

'uu
dt

dr
+=  

The simplest form, which the law of this decrease can have, is that in which the value of the force 

for the case of rest and equilibrium is multiplied by the factor 


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
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
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dt
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a  

whereby the following expression would therefore serve for the complete determination of the 

force: 
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in which e and e' have positive or negative values, according to whether the electrical masses which 

they denote are part of the positive or negative fluids. 2a  is a constant. 

For our case, when we try to make use of this simplest form, there result the following four 

reciprocal actions between the electrical masses in the two current elements: 

  1. between e+  and 'e+  the force ( )( )22

2
'1

'
uua

r

ee
−−+ , 

  2. between e−  and 'e−  the force ( )( )22
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3. between e+  and 'e−  the force ( )( )22
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4. between e−  and 'e+  the force ( )( )22

2
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'
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r

ee
+−− . 

The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus 

( )( )22

2
'1

'
2 uua
r

ee
−−+= ; 

the sum of the two latter forces, that is, the sum of the attractions of unlike forces, is 

( )( )22

2
'1

'
2 uua
r

ee
+−−= . 

These two sums are thus, apart from their signs (distinguishing repulsion and attraction), 

distinguished according to their magnitude. Their algebraic sum, which yields the resultants of all 

four reciprocal actions, and consequently the force, which is transmitted from the electrical masses 

to the current carrier itself, and on which Ampère's law is based, is accordingly 

'
'

8 2

2
uua

r

ee
⋅+= , 

i.e., it follows that this force, in complete agreement with Ampère's law, is directly proportional to 

the current intensity in both current elements, and inversely proportional to the square of the 

distance between the two current elements. 

We further observe, that the foregoing expression is positive, and consequently denotes a 

repulsion of the current-elements, if u and u' both have either a positive or negative value, i.e, if the 

electricity flows through both current elements in the same way; and that if only one of the two is 

positive, the other negative, the foregoing expression becomes negative, which denotes an 

attraction of current-elements, if the electricity is flowing through them oppositely. All these 

results precisely correspond to the first fact stated above. 
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If we now proceed to the second fact stated above, it is clear that the supplement to the 

electrostatic law just provided will no longer suffice here, because for all cases included under this 

second fact, it yields the value of the relative velocity of the electrical masses 

0=
dt

dr
. 

That is to say, if we follow two electrical particles in their paths, the result is that their relative 

distance decreases up to the moment in question, and from then on increases again, and therefore, 

at the moment in question itself, neither increase nor decrease in the distance takes place; 

consequently, for all these cases, the electrostatic law itself, would be brought into application in 

order to determine the four reciprocal actions of the electric masses in both current elements, 

without applying a supplement to the law, according to which the two current elements ought to 

have no effect at all upon one another, which is not the case. 

It is easily proven, however, that for this second class of cases, where the value of the 

relative velocity dr/dt disappears, the value of the relative acceleration 22 / dtrd  stands out all the 

more significantly, while for the first class, where the latter value 22 / dtrd  disappears, the first 

dr/dt stood out all the more significantly. 

Thus we assume, that the magnitude of the reciprocal action of electrical masses in motion, 

as determined by the electrostatic law, requires a supplement, which depends, however, not simply 

on the square of the relative velocity of both masses 22 / dtdr= , but also on their relative 

acceleration 22 / dtrd= ; the simplest form, which the general law of reciprocal action of two 

electrical masses can have, is that in which the value of the force for the case of rest and 

equilibrium is multiplied by the factor 
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and in which, therefore, the following expression would serve for the complete determination of the 

force: 
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in which e and e' have positive and negative values, accordingly as the electrical masses which they 

denote, are part of the positive or negative electrical fluid. 2a  is the same constant as before; b is 

another magnitude independent of velocity and acceleration, whose value and sign remain to be 

more closely determined. 

If, as before, e and e' now denote the positive electrical masses in both current elements, u 

and u' their absolute velocities, -e and -e', the negative masses, and -u and -u' their absolute 

velocities, and R denotes the distance between the current elements, r the distance of the two 

positive electrical masses, then for the first moment r = R, but because the electrical masses are in 

motion, r soon changes, while R remains unchanged, and after the time-interval t has occurred, the 

following equation is yielded for determining the value of r, calculated from that moment on: 

( ) 2222 ' tuuRr −+= , 

consequently, because R, u and u' are constant, 

( ) tdtuurdr
2

'−=  

and 

( ) 2222 ' dtuudrrrd −=+ , 

which yields the values of the relative velocity and relative acceleration at the end of time-interval 

t, namely: 
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If we apply these general determinations to the considered moment, for which t = 0, we will obtain 

the values for the relative velocity and acceleration of both positive masses to be introduced into 

our expression: 

0=
dt
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consequently, for the first of the four reciprocal actions we obtain: 
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It is self-evident, that the remaining reciprocal actions can be derived from this first one, through 

substitution of the corresponding masses and velocities; then we obtain 
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The sum of the first two forces, that is, the sum of the repulsions of like masses, is thus  
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The sum of the last two forces, that is, the sum of the attraction of unlike masses, is, however, 
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These two sums are, therefore, apart from their signs (distinguishing repulsion and attraction), 

distinguished by their magnitude. Their algebraic sum, which yields the resultant of all four forces, 

consequently the force which is transmitted from the electrical masses to the current carrier itself, 

and on which Ampère's law is based, is accordingly 
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i.e., this force accordingly emerges in complete agreement with Ampère's law, directly proportional 

to the current intensity in both current elements, and inversely proportional to the square of the 

distance between the two current elements. 

We further observe, that if b is positive, the above expression would be negative, and 

consequently would denote an attraction of current elements, if u and u' both have either a positive 

or a negative value, i.e., if electricity flows through both current elements in the same way; if, 

however, only one of the two is positive, the other negative, then the above expression will be 

positive, which denotes a repulsion of the current elements, if the electricity flows through them in 

an opposite way. All these results precisely correspond to the second fact stated above. 
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If, finally, we return to Ampère's formula itself, which includes both facts as special 

cases, according to which the repulsion of two current elements is the following: 

''coscos
2

3
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

 − ϑϑε , 

wherein the letters have the significance given on page 36,
38

 then, for the cases included under the 

first fact, 

º0=ε  or º180= , 

 

according to whether ϑ  and 'ϑ  both  

= 0º or = 180º, 

or only one of the two  

= 0º, the other = 180º. 

Consequently, the sought-for value for the force in the cases included under the first fact is, 

according to Ampère's law 
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For the cases included under the second fact, 

º0=ε  or 180º, 

according to whether ϑ  and 'ϑ  both  

= 90º or = 270º, 

or only one of the two  

= 90º, the other = 270º. 

Consequently, the sought-for value for the force in the cases included under the second fact is, 

according to Ampère's law 
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According to Ampère's fundamental law, we also obtain (apart from signs) a value for the latter 

case double that of the first. 

This also results from our own determinations, if we make 
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whereby the value and the sign of b are more closely determined, namely: 
22rab = . 

If we substitute this value of b in our general expression for the reciprocal action of two electrical 

masses, the resulting repulsive force is 
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The third fact stated above is ultimately based, not, like the two previous ones, on forces, 

which merely act on the current carrier, but rather on forces which act on the electrical masses 

themselves and move them in their carrier, seeking to separate unlike masses; that is, on 

electromotive forces, which are exerted by electrical masses in motion in a galvanic conductor on 

electricity at rest. These forces, however, are not only not determined by the electrostatic law, but 

also not determined by Ampère's electrodynamic law, because the latter relates merely to the forces 

transmitted to the current carrier, and the former, were it to be applicable, would yield the value of 
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the electromotive force = 0. Thus these forces form an essentially new class, with which 

Faraday's discovery has first acquainted us. 

If we consider once more simply the electrical masses in the current element as well as in 

the element without current, we again have in each one, equal masses of positive and negative 

electricity; specifically, at any time in the current element these two masses are in motion with 

equally great velocity in opposed directions, and these velocities increase or decrease 

simultaneously by equal amounts; in the element without current, on the other hand, both masses 

are still at rest and in equilibrium. Further, among these four masses, four reciprocal actions are 

now to be distinguished, namely, two repulsive and two attractive, the former between the like 

masses, the latter between the unlike. 

Now, from the fact, that a current is produced in the element, in which previously there was 

no current, we must conclude, that another force, than the one acting on the negative mass, must be 

acting on the positive electrical mass in this element, in the direction of the latter, because the 

negative mass can only receive that opposite motion through such a difference in the forces acting 

upon it, of which motion the current which manifests itself essentially consists. We thus express the 

fact initially in this way, 

 

that the sum of the two forces, which are exerted by the positive and negative electrical 

masses in the current element on the positive mass at rest in the element without 

current, in the direction of the latter, is different from the sum of those two forces, 

which those masses exert in the cited current element on the negative mass at rest in the 

element without current, in the direction of the latter; that, however, the difference of 

the two sums, that is, the electromotive force itself, is dependent on the change in 

velocity of the two electrical masses in the given current element, and increase or 

decrease and disappear with this change. 

 

Thus we are led by this third fact, as well, to add to the electrical forces determined by the 

electrostatic law, a supplement contingent upon their motion, and the question is merely, whether 

this justifies exactly the same supplement, as that which was established on the basis of the first 

two facts. This third fact therefore yields a criterion for testing the results already obtained, and is 

especially suited to their rejection or their firmer substantiation. 

If we now denote, as above, e and e' the positive electrical masses in both wire elements, u 

and 0 their absolute velocities, and R the distance between the wire elements, r the distance 

between the two positive electrical masses: then for the first moment of time, r = R, but because 

mass e distances itself from, or approaches, the mass at rest e' with variable velocity u, r soon 

changes, while R remains unchanged, and we have for the determination of the value of r, after 

time-interval t has occurred, and calculated from that moment forward, 

∫±=
t

udtRr
0

, 

where the upper sign is in effect, if mass e lies on the positive side of mass e', and consequently is 

still further distanced from it with a positive velocity; conversely, if mass e lies on the negative side 

of mass e', and consequently approaches it with a positive velocity, the lower sign is in effect. 

By means of differentiation, we obtain: 

udtdr ±=  

dudtrd ±=2 . 

According to this, the values of relative velocity and relative acceleration of both masses at the end 

of time-interval t are thus: 
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u
dt

dr
±=  

dt

du

dt

rd
±=

2

2

; 

in which u and du are functions of t. If we now apply these general determinations to the 

considered moment under consideration, and denote the values which u and du assume if t = 0, as 

0u and 0du , then, according to the general law of reciprocal action of two electrical masses, to 

which the two first facts led, we obtain as the first of four reciprocal actions: 

1. between e+  and 'e+  the force 






 ±−+
dt

du
raua

r

ee 022

0

2

2
21

'
. 

It also becomes clear, that the remaining reciprocal actions can be derived from this first one, 

through substitution of the corresponding masses, velocities, and accelerations; we then obtain: 

2. between e−  and 'e+  the force 






 −−
dt

du
raua

r

ee 022

0

2

2
21

'
m , 

3. between e+  and 'e−  the force 






 ±−−
dt

du
raua

r

ee 022

0

2

2
21

'
, 

4. between e−  and 'e−  the force 






 −+
dt

du
raua

r

ee 022

0

2

2
21

'
m . 

The sum of the two first forces, that is, the sum of the forces acting on the positive mass +e' in the 

element without current, is therefore 

dt

du
a

r

ee 02'
4±= . 

The sum of the two latter forces, that is, the sum of the forces acting on the negative mass -e' in the 

element without current, is, however, 

dt

du
a

r

ee 02'
4m= . 

These two sums are differentiated by their opposing signs (distinguishing repulsion and attraction). 

Their difference yields the electromotive force, which seeks to separate the positive and negative 

masses in the element without current, 

dt

du
a

r

ee 02'
8±= , 

i.e., the electromotive force is directly proportional to the self-initiated change in the velocity of the 

current at the moment under consideration, and inversely proportional to the distance of the current 

element from the element without current. 

Further, as for the double signs in our expression for the electromotive force, they can be 

eliminated, if we base them on the distance r and thus impute to it positive and negative values, 

calculating r from the locus of the mass at rest e' as the initial point, and specifically as a positive 

magnitude, when the mass e calculated from this initial point lies on the positive side (toward 

which the positive velocities are directed), and as a negative magnitude, when the mass e lies on the 

negative side from this initial point. If, for example, in Figure 15, A denotes the locus of the mass at 

rest e', BAC the given line of direction, and the side on which C lies is established as the positive 

side, then r is positive, if mass e is at point C, negative, when mass e is at point B. 
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If, therefore, two like current elements are located at B and C, through which electricity is 

flowing in the same way, and the intensity of its current increases or decreases by the same amount, 

then these two current elements will exert opposite electrical forces on the electrical masses at rest 

at A, such that that mass, which is repulsed from C, is attracted by B, and vice versa; the force 

which seeks to separate the positive and negative masses at A, is thus doubled by means of the 

combined operation of the two current elements at B and C. 

Finally, if r is positive, if, e.g., the current element is located at C, and if, further, u and du 

both have either negative or positive values, i.e., if the absolute current velocity at C increases, 

regardless of its direction, then the foregoing expression has a positive or negative value, according 

to whether u has a positive or negative value, i.e., therefore, under increasing current intensity, an 

electromotive force acts from C repulsively or attractively on the positive electrical mass at A, 

according to whether the current at C itself is directed forwards or backwards, and thus excites at A 

a current opposite to the one present at C, fully corresponding to the determinations contained in 

the third fact stated above. 

From this it follows, that this third fact confirms the result derived from the first two, in that 

the same complement of the electrostatic law into a general law, which served to explain the first 

two facts, also suffices to explain the third. 

 

20. 

 

In the foregoing Section, following the guideline of experience, we have sought to add to 

the electrostatic formulation for the repulsive or attractive force, with which two like or unlike 

electrical masses act upon one another at a distance, in such a way, that the formulation is 

applicable, not simply when both masses are at rest with respect to one another, but also when they 

are in motion with respect to one another. We have tested and confirmed this expansion on 

particular facts, and in the following Section, will present this test with greater generality. 

Assuming the correctness of the results which we achieved, a case would arise here, in 

which the force, with which two masses act upon one another, would depend, not simply upon the 

magnitude of the masses and their distance from one another, but also on their relative velocity and 

relative acceleration. The calculation of these forces will thus in many cases come up against 

greater mathematical difficulties, than the calculation of such forces which simply depend upon the 

magnitude of the masses and their distances. It should also be expected, if this dependency of the 

electrical forces, not simply on the magnitude of the electrical masses and their distances, but also 

on their relative velocities and accelerations, were firmly established, that this very dependency, 

even if to a lesser extent, would exist in other forces, according to more exact investigation. 

Thereby a completely new element would be introduced into the dependency of forces on 

given physical relationships, and the domain of forces, whose determination would require taking 

this new element into account, would form a specific class, requiring a special investigation. 

As, however, it must also appear highly desirable, for the purpose of simplifying and 

facilitating our investigations, that the domain of those forces which depend simply on the 

magnitude of the masses and their distances, be extended as widely as possible, then, only 
experience can decide whether other forces, which are also dependent on the mutual velocities and 

accelerations of the masses, must be assumed to be present, or not. This question cannot be decided 
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a priori, because formally, the assumption of such forces contains neither a contradiction, nor 

anything unclear or indeterminate. 

The law of the dependence of forces upon given physical relationships is called the 

fundamental law of physics, and, in accordance with the goals of physics, it is not supposed to 

provide an explanation of the forces based on their true causes, but only a clearly demonstrated and 

useful general method for quantitative determination of forces, according to the fundamental 

metrics established in physics for space and time. Hence, from the standpoint of physics, one can 

not take offense at the fact that a force is made into a function of a relationship dependent on time, 

any more than one can take offense at the fact that it is made into a function of distance, because a 

relationship dependent on time is just as measurable a magnitude as a distance; therefore, in virtue 

of their nature, both are suited to more rigorous quantitative determination, even if it is not 

appropriate to seek in them the inherent reason for a force. 

At most, accordingly, against the introduction of a time-dependent relationship in the 

general expression for a force, the analogy with another fundamental law of physics, e.g. with the 

law of gravitation, may be asserted, where this time-dependent relationship does not occur. Yet 

such an analogy can only be viewed as binding, when it offers ways and means to achieve the goal; 

where the analogy with known cases does not suffice, in the nature of the case new paths must be 

sought. 

If, therefore, the introduction of such time-dependent relationships in the general expression 

for a force cannot be rejected in general, then all the less so, if those relationships are an essential 

part of the complete determination of the existing condition of masses acting upon one another, 

since in any case the force, which two masses exert upon one another, since it does not always 

remain the same, must be thought of subject to the condition existing at the time. Complete 

determination of the present condition of two masses, however, essentially involves, in addition to 

the determination of their relative position by means of their mutual distance r, the determination of 

their relative movement by means of their relative velocity dr/dt. For, according to the principle of 

inertia, one has no choice but to calculate the velocity of a body essentially in its present condition, 

because the reason for the inertia lies, according to that principle, in the body itself, and 

consequently the persistence in different motion must correspond to different internal conditions of 

the body, which, themselves inaccessible to our observation, can only be distinguished by means of 

their effects emerging over time. 

 

21. 

 

Transformation of Ampère's law. 

 

What was proven in the foregoing Sections for a few special facts, is now to be proven more 

generally and more precisely for all facts contained under Ampère's law. Ampère's law determines 

the total effect which one current element exerts on the other, depending on the distance of the two 

elements from each other, on their two current intensities, and on the three angles which the 

directions of the current elements make with each other and with the straight lines connecting them. 

Now, if it is to be possible to reduce this total effect, thus determined, to elementary electrical 

forces, then first Ampère's formula must be able to be broken down into several parts, which 

correspond to the effects of each pair of electrical masses in both current elements, in particular to 

the effect of the positive mass of the one element on the positive mass of the other, of the negative 

mass of the one element on the negative mass of the other, of the positive mass of the former on the 

negative of the latter, and finally of the negative mass of the former on the positive of the latter. 

Secondly, each of these parts, as elementary electrical force, must be wholly dependent on such 

magnitudes, which exclusively appertain to the nature and the mutual relations of the two electrical 
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masses, to which the part refers, and be completely determined thereby, independently of other 

conditions. Thirdly and finally, all these elementary electrical forces would have to be susceptible 

of being brought under a general law. It is, however, not necessary, to make any sort of hypothesis 

in advance about this general law; rather, Ampère's law, under such a transformation, would have 

to lead directly to the statement of this general law and decide on the admissibility or 

inadmissibility of such a hypothesis posed in advance. At the outset, the following question is to be 

answered: 

 

whether Ampère's formula permits a transformation, such that the current intensities 

contained therein, i and i', and the angles ε , ϑ , and 'ϑ , which the two current elements 

form with each other and with the straight line connecting the two elements, vanish 

from the formula, and instead of these, only such new magnitudes are introduced, 

which fully and exclusively refer to the electrical masses themselves and their mutual 

relations. 

 

This transformation is now actually to be carried out here, and then it will be examined whether the 

expression for the electrodynamic force, transformed in this way, permits the requisite 

decomposition into four parts, corresponding to four partial effects, of which the total effect would 

be composed. 

Ampère's formula for the repulsive force of two current elements is as follows: 

''coscos
2

3
cos

'
2

dsds
r

ii
⋅






 −− ϑϑε , 

in which the letters have the signification given in Section 8, page 36.
39

 

 

 
 

In Figure 16, AB is a segment of the one conducting wire of length = 1, and the quantity of the 

uniformly distributed positive electricity in it is denoted by e, so that eds is the mass of positive 

electricity which the current element contains, whose length = ds. 

With the constant velocity u, which all positive electrical components possess in the 

conducting wire AB when a constant current passes through, in one second the one farthest forward 

traverses the path BD, the one farthest back the path AC, and the electrical mass e, which at the 

beginning of the second was uniformly distributed in the segment AB = 1, is located at the end of 

the second in segment CD = 1. Hence, during one second, all the electricity which, at the end of the 

second, is contained on the other side from B in the segment of the conducting wire BD = u, has 

passed through the cross-section of the conducting wire at B. This electricity, in conformity with 

the definition of current intensity given at the beginning of Section 2 (according to which it is 

proportional to the amount of electricity passing through a cross-section of the circuit in one 

second), can now be set = i/a, where a denotes a constant. There then results 

1:: ue
a

i
= , 

consequently i = aeu. The value of a is different from that in Section 19. 
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It likewise results that, if u' denotes the current velocity of the electricity in another 

conducting wire, 

i' = ae'u'. 

If one substitutes these values in Ampère's formula, the formula will be 








 −
⋅

− 'coscos
2

3
cos'

'' 2

2
ϑϑεuua

r

dseeds
, 

where, therefore, the first factor 2/'' rdseeds ⋅  denotes the product of two electrical masses acting 

on one another in the two current elements, divided by the square of their distance. 

Further, Ampère has already shown on page 207 of his Treatise, that it would be the case 

that 

ds

dr
=ϑcos ,  

'
'cos

ds

dr
−=ϑ  

and 

''
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2
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ds

dr

dsds

rd
r −−=ε  

If one substitutes these values, the Ampère formula takes the following form: 









−⋅

⋅
−

''2

1
'

'' 2
2

2 dsds

rd
r

ds

dr

ds

dr
uua

r

dseeds
. 

 

 
 

Let the element ds of the conducting wire ABS be located at B in Figure 17; the initial point 

of the conducting wire would be put at A, consequently AB = s. Let the element ds' of the 

conducting wire A'B'S' lie at B, A' be the initial point of this wire, A'B' = s' and BB' = r. The last 

magnitude r, if the conducting wires ABS and A'B'S' are given, is a function of s and s', and the 

following expressions obtain for dr and rd 2 : 

'
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2
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rd ++= . 

If s and s' now denote the lengths of the conducting wires from their initial points to the current 

elements themselves which are under consideration, then s and s' have constant values for two 

given current elements. However, s and s' can also signify the length of the conducting wires from 

their initial points to the electrical masses just now existing in the current elements under 
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consideration, but flowing through them further. In this last signification, s and s' are variable 

with the time t, and then one has 

dt

ds

ds
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Here, in ds/dt, the velocity element of the electrical mass is divided by the time element in which it 

will pass through, i.e., the velocity of the electrical mass, and therefore ds/dt = u, when the positive 

mass is considered first. Likewise, then ds'/dt = u'. If these values are substituted, then 
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From the latter equation, and from the one derived from the first 
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from which it follows: 
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If these values are substituted, then Ampère's formula takes the following form: 
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In this transformation of Ampère's formula, there are first introduced merely the positive 

electrical masses, which move in their trajectories with the velocities u and u'. It is clear that one 

can also introduce the negative electrical masses instead of the positive ones. It then results, if this 

occurs for both current elements alike, that both of the masses introduced are therefore again of the 

same kind, but their velocities, in accordance with the determinations given for galvanic currents on 

page 85,
40

 both maintain the opposite values, namely - u and - u', in turn in the same expression. 

Then if 1r , ς  and 'ς  denote for the negative masses the same thing that r, s, and s' denote for the 

positive, Ampère's formula would be obtained at first in the following form: 
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For the moment under consideration, where those positive masses (to which r, s, and s' refer) and 

these negative masses (to which 
1r , ς , and 'ς  refer) go through the same current elements, 

however, 
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Further, it is also the case that 
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because all these values are simply dependent upon the position of the current elements through 

which those positive and these negative masses flow, but independent of the motion of the masses 

in these current elements. Finally, 
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which yields 
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Likewise one finds 

2

2

2

1

2

dt

rd

dt

rd
= . 

By substitution of these values, the latter expression changes into the former. 

It is a different case when a positive and a negative mass are introduced, viz., with unlike 

kinds of masses. If one keeps the positive mass in the first current element, the negative in the 

second, and denotes their distance with 2r , then Ampère's formula is obtained in the following 

form: 
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On the other hand, if one keeps the negative mass in the first current element, the positive in the 

second, and denotes their distance with 3r , then Ampère's formula is obtained in the following 

form: 
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Here too, if it is now the case that rrr == 32 , then 
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however, it results that 
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consequently 22

3

22

2 // dtdrdtdr =  is different from 22 / dtdr . Likewise, one finds 

2

3

22

2

2 // dtrddtrd =  to be different from 22 / dtrd . By substituting these values, in both cases 

where one introduces masses of a different kind, one obtains the same expression for Ampère's 

formula, namely: 
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Now, since both expressions, the earlier one, which was obtained by introducing masses of 

the same kind, as well as the later one, obtained by introducing masses of a different kind, represent 

the force with which two current elements act upon each other, are both identical with Ampère's 

formula, yet a third will be derived from them for the same force, likewise identical with Ampère's 

formula, if one takes their half-sums, that is, 
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This last expression, equivalent to Ampère's formula, is the sought-for transformation. For 

thereby the magnitudes i, i', ε , ϑ  and 'ϑ  are eliminated, and only such magnitudes introduced in 

their place which have to do with, partly the same, partly the different kind of electrical masses 

themselves and their mutual relations. 

This transformed expression for Ampère's formula can now be represented as a sum of four 

parts, which can be considered as the elementary electrical forces, namely, in the following way: 
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Each of these four partial effects reduces itself, for the case of rest, where 

0//// 321 ==== dtdrdtdrdtdrdtdr  and likewise 0////
2

3

22

2

22

1

222 ==== dtrddtrddtrddtrd , 

to the same values, as are defined for this case by the fundamental law of electrostatics; for these 

four forces are expressed in that case by the product of the masses acting upon each other, divided 

by the square of their distances. Accordingly as each product has a positive or negative value, the 

force acts to repel or attract. 

If, as in electrostatics, the electrical masses are denoted simply by e and e', and these masses 

themselves are given positive or negative values, according to whether they belong to the positive 

or negative fluid, then all those partial effects can be brought under the general law, in which the 

repulsive force of those masses is represented by 
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Therefore, from this analysis of Ampère's law, which is a more precise expression of a very 

extensive class of facts, there follows the same fundamental electrical law, which in the preceding 



 99 

Sections was established merely by introducing particular facts, and this was demonstrated 

without hypothesis. 

 

22. 

 

Theory of two constant current elements. 

 

Having attained the fundamental electrical law expressed in the previous Section, we can 

place it at the head of the theory of electricity, and from it synthetically derive a system of 

consequences, which is the ultimate purpose of such a law. 

The consequences which can be derived from it for static electricity, are found in Poisson's 

classic Treatise in the Mémoires de l'academie des sciences de l'institut de France, for the year 

1812. For the foregoing fundamental law is, for the case of statics, identical with that law which 

Poisson, in the cited location, placed at the head of electrostatics. 

For moving electricity, first the uniform motion of the electricity of galvanic currents in 

conductors at rest is to be considered, to which Ampère's law relates. Now, since the above 

fundamental electrical law was developed analytically from Ampère's law, Ampère's law must in 

turn follow synthetically from this fundamental law. This derivation is actually to be given here. 

In two current elements α  and 'α , which, with the straight line connecting them, lie in 

planes which make the angle ω  with one another, four electrical masses are given, namely, one 

positive and one equally large negative in each current element. 

For element α , eα+  would denote the positive mass, which moves with constant velocity 

u+  in the direction of element α , which forms the angle ϑ  with the straight line r directed from 

the first element to the second; for the same element, eα−  would denote the negative mass, which 

moves in the same direction with the constant velocity u− , viz., backwards. 

The letters with primes ''eα± , 'u±  and 'ϑ  denote the same thing for the other element 'α , 

as the letters without primes denote for the first element α . 

Among these four masses, the following four effects are to be considered: 

from eα+  to ''eα+ , 

from eα−  to ''eα− , 

from eα+  to ''eα− , 

from eα−  to ''eα+ . 

The four distances of these masses acting upon each other at a distance are equal at the moment 

under consideration, when all these masses are located in the two given elements α  and 'α , to the 

given distance of these two elements r. These four distances, because they do not always remain 

equal, on account of the differing motions of the masses, are denoted by 1r , 2r , 3r , 4r , and 

therefore, at the moment under consideration 

rrrrr ==== 4321 . 

The application of the fundamental law given at the end of the previous Section then 

directly yields the values for these four partial effects, in succession, 
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These four forces are transferred from the electrical masses ''eα+  and ''eα− , on which 

they directly act, according to Section 19, page 84,
41

 to the ponderable mass of the element 'α , and 

combine therein into a resultant, which is equal to the algebraic sum of those forces. This sum is, 

with respect to the already mentioned equality of the distances, 

















−−+−








−−+

⋅
⋅−

2

4

2

2

3

2

2

2

2

2

1

2

2

2

4

2

2

3

2

2

2

2

2

1

2

2

2
''

16 dt

rd

dt

rd

dt

rd

dt

rd
r

dt

dr

dt

dr

dt

dr

dt

dr

r

eea αα
. 

If the mass eα+  now progresses in its path in the time element dt with velocity u+  by the 

element of displacement udt+ , which path forms the angle ϑ  with the straight line 1r , while the 

mass ''eα+  progresses in its path in the same time element dt with the velocity 'u+  by the element 

of displacement dtu'+ , which path forms the angle 'ϑ  with the extended straight line 1r , and if 

these small displacements are projected onto the direction 1r , then 

'cos'cos111 ϑϑ ⋅+⋅−=+ dtuudtrdrr , 

in which 1dr  denotes the change of length of the straight line connecting the two positive masses 

during the time element dt. From this follows 

'cos'cos1 ϑϑ uu
dt

dr
+−= . 

Likewise there results for the two negative masses eα−  and ''eα− : 

'cos'cos2 ϑϑ uu
dt

dr
−+= ; 

further, for the positive eα+  and for the negative ''eα− : 

'cos'cos3 ϑϑ uu
dt

dr
−−= ; 

finally for the negative eα−  and for the positive ''eα+ : 

'cos'cos4 ϑϑ uu
dt

dr
++= . 

Hence, 
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Now, since, further, the velocities u and u' are constant, when the changes in the angles ϑ  

and 'ϑ  (which themselves of course have the same value at the moment under consideration for all 

four pairs of masses, but which values change with time and become unequal) during the time 

element dt, are denoted 

for the first pair of masses, 1ϑd  and 1'ϑd  

for the second pair of masses, 
2ϑd  and 

2'ϑd  

for the third pair of masses, 3ϑd  and 3'ϑd  

for the fourth pair of masses, 4ϑd  and 4'ϑd , 

there results through differentiation of the first differential coefficients: 
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  [N. E.] Page 137 of Weber’s Werke, Vol. 3. 
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Now, let AB in Figure 18 represent the line r. Let the mass eα+  be located at A and move in the 

direction AC with the velocity u+  in the time element dt through AD = + udt. The angle which the 

current direction AC forms with AB, is ϑ=BAC . As a result of the motion of A to D, the angle 

BAC becomes BDC, and 

ϑϑ sin
r

udt
ABDBACBDC +=+= . 

The line AB in Figure 19, which again represents r, is extended to B'. The mass ''eα+  is located at 

B and moves in the direction BE with velocity 'u+  in the time element dt through BF = + u'dt. The 

angle which the current direction BE forms with BB', is '' ϑ=BEB . As a result of the motion of B 

to F, the angle B'BE becomes F'FE, and 

'sin
'

''' ϑϑ
r

dtu
FEFBAFAFBBEB +=+== , 

accordingly is 

'sin
'

'' ϑϑ
r

dtu
FEF −= . 

Finally, if, through the center of a sphere, lines are drawn parallel to the direction AB and to 

the two current directions AC and BE in Figs. 18 and 19, which cut the sphere's surface at R, U, and 

U' in Figure 20, and R is connected with U and U' by the arcs of great circles, then the plane of the 

arc ϑ=UR  is parallel to the plane BAC in Figure 18, and the plane of the arc '' ϑ=RU  is parallel 

to the plane B'BE in Figure 19, and the angle formed by the two planes at R is the angle denoted ω . 

 



 102 

 
 

Let arc UR be extended to S, U'R to S', and make 

'sinϑ
r

udt
RS += ,  'sin

'
' ϑ

r

dtu
RS −= . 

Then US is the arc of the angle BDC in Figure 18, and U'S' is the arc of the angle F'FE in Figure 

19. The element of the surface of the sphere, in which R, S, and S' lie, can also be considered as an 

element of the plane touching the surface of the sphere at R, and the arc elements RS and RS' as 

straight lines in this plane. If the parallelogram RSR'S' is completed in this plane, then a line drawn 

through the center of the sphere parallel to the straight line connecting both masses at the end of the 

time element dt, goes through the point R'. From this it follows that the direction of this straight line 

is changed by the simultaneous motion of both masses exactly as it would change, if the one mass 

were at rest and its motion, taken as being opposite, were attributed to the other mass. Both 

motions, transferred to a point in this way, can then be combined according to the law of 

parallelograms, and the cited result is obtained. 

Finally, if R' is connected with U and U' by means of the great circle arcs, then 

11' ϑϑϑ dURdUR +=+=  

11 '''''' ϑϑϑ dRUdRU +=+= . 

It follows that: 

ωϑ cos' '1 RSRSURURd +=−=  

ωϑ cos''  '''1 RSRSRURUd +=−= . 

Now, since ϑsin
r

udt
RS += , 'sin

'
' ϑ

r

dtu
RS −= , it follows that: 
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dtu
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dtu
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Accordingly, 

ωϑϑ
ϑ

cos'sin'sin1 uu
dt

d
r −+=  

ωϑϑ
ϑ

cossin 'sin'
'1 uu

dt

d
r +−= . 

In the same way, there results for the two negative masses eα−  and ''eα− : 

ωϑϑ
ϑ

cos'sin'sin2 uu
dt

d
r +−=  
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ωϑϑ
ϑ

cossin 'sin'
'2 uu

dt

d
r −+= , 

further, for the positive mass eα+  and for the negative ''eα− : 

ωϑϑ
ϑ

cos'sin'sin3 uu
dt

d
r ++=  

ωϑϑ
ϑ

cossin 'sin'
'3 uu

dt

d
r ++= , 

finally, for the negative mass eα−  and for the positive ''eα+ : 

ωϑϑ
ϑ

cos'sin'sin4 uu
dt

d
r −−=  

ωϑϑ
ϑ

cossin 'sin'
'4 uu

dt

d
r −−= . 

If these values are now substituted, the following equation is obtained:
42

 

                                                 
42

  [N. A.] This equation can also be derived from the equations of motion of the four electrical masses. Let a plane be 

laid parallel with 'α  through the element α . Let O be that point in this plane, at which direction α  is cut by direction 

'α , which is projected on this plane. Let O be the origin of the coordinates, direction α  as the x axis, and the z axis be 

perpendicular to the above-mentioned plane. Further, imagine that both masses always move forward uniformly in the 

same directions, and choose that moment as the initial point of time t, for which the coordinates of the mass later 

considered in 'α  are 

x' = 0, y' = 0, z' = c. 

If ε  then denotes the angle which the directions α  and 'α  form with each other, x, y, z the coordinates of the mass 

later considered in α , and u and u' the velocities of both masses, then the equations of motion are 

for the one mass: for the other mass: 

utbx +=  εcos'' ⋅= tux  

y = 0 εsin'' ⋅= tuy  

z = 0 z' = c 

where b and c are given constants. Accordingly, 

( ) btuuxx −⋅−=− εcos''  

εsin'' ⋅=− tuyy  

czz =−'  

and, since ( ) ( ) 222

1 )'('' zzyyxxr −+−+−=2
, 

( )[ ] 222222

1 sin'cos' ctubtuur ++−⋅−= εε . 

If this equation is differentiated with respect to 1r  and t, one obtains: 

( )[ ]( ) εεε 22

1

1 sin'cos'cos'
1

⋅+−−⋅−⋅= tuuubtuu
rdt

dr
, 

and, through repeated differentiation, 

εcos'2'
22

2

2

1

2

1

2

1 uuuu
dt

dr

dt

rd
r −+=+ . 

Now, for the moment where the two masses have reached α  and 'α , if ϑ  denotes the angle which the direction from 

α  to 'α  forms with the first coordinate axis, 

ϑcos' 1rxx =− . 

If lines are drawn parallel with the three coordinates, further with the direction from α  to 'α , and finally with the 

direction 'α  itself, through the center of a sphere, whose surface is cut into 

X, Y, Z, R and P, 

then RY is the arc of the angle, which the line from α  to 'α  forms with the second coordinate axis, and hence for the 

moment, where the two masses reach α  and 'α , 

RYryy cos' 1−− . 
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ωϑϑ cos'sinsin'8
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If these values and those found for 
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 are substituted in the above 

expression for the resultant of four partial effects, then one obtains the following values for it: 
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If one substitutes here, according to page 94,
43

 

iaeu = ,  ''' iuae = , 

then, according to this derivation from the established fundamental electrical law, there results for 

the repulsive force of two current elements the same value as according to Ampère's law, namely: 
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 −− 'coscos
2

1
cos'sinsin'
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ϑϑωϑϑ
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, 

or, when ε  denotes the angle which the two elements α  and 'α  themselves make, and where then 

'coscoscos'sinsincos ϑϑωϑϑε += , 

                                                                                                                                                                 
Now, however, in the spherical triangles PRX and PRY, because the radius P (which is parallel to the direction 'α ) lies 

in the same greatest circle with the radii X and Y (which are parallel to the plane of the coordinate axes x and y), 

XYPRPXRYPYRX sincossincossincos =+ , 

and further, 

º90=XY , ε=PX , ϑ=RX , 'ϑ=PR , 

where 'ϑ  denotes the angle which the line from α  to 'α  forms with the direction of 'α  itself. If these values are 

substituted, there results 

ε
εϑϑ

sin

coscos'cos
cos

−
=RY , 

hence 

ε
εϑϑ

sin

coscos'cos
' 1

−
⋅=− ryy . 

If t in the above equations now denotes for x' - x and y' - y those values, which correspond to the moments at which the 

two masses reach α  and 'α , then the above values of x' - x and y' - y are to be set equal to the ones just found, or 

( ) ϑε coscos' 1rbtuu =−−  

ε
εϑϑ

ε
sin

coscos 'cos
sin' 1

−
⋅=⋅ rtu . 

If these values are substituted in the expression for 
dt

dr1 , the result is: 

ϑϑ cos 'cos'1 uu
dt

dr
−+= . 

If from this is subtracted the square of the value found for 
2

2

1

2

1

2

1
dt

dr

dt

rd
r + , then it remains the case that 

( )'coscoscos'2 'sin'sin
2222

2

1

2

1 ϑϑεϑϑ −−+= uuuu
dt

rd
r  

or, if the angle ω  is introduced, in accordance with the equation 'coscoscos'sinsincos ϑϑωϑϑε += , 

ωϑϑϑϑ cos'sinsin'2 'sin'sin
2222

2

1

2

1 uuuu
dt

rd
r −+= . 

The corresponding differential coefficients of the other pairs of masses are found in the same way, which then together 

give the above equation. 
43

  [N. E.] Page 152 of Weber’s Werke, Vol. 3. 
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






 −− 'coscos
2

3
cos'

'
2

ϑϑε
αα

ii
r

. 

The actions at a distance of uniform electrical currents in conducting wires at rest are hereby fully 

determined. The derivations of the established fundamental law carried out up to now are all 

empirically confirmed. 

 

Theory of Volta-induction. 

 

23. 

 

It still remains to develop, from the established fundamental electrical law, the effects of 

variable electrical currents in moving conductors, which development comprises the theory of 

voltaic induction. 

Voltaic induction differentiates itself from Ampère's electrodynamics in that it has to do 

with the generation of currents, which is wholly excluded from the latter. 

The following is empirically known about voltaic induction. We know, first, that it can be 

elicited in two essentially different ways: namely, currents can be induced by means of constant 

currents and by means of variable ones. Induction occurs by means of constant currents, either 

when a conducting wire, through which the constant current is passing, approaches the conducting 

wire in which a current is to be induced, or is moved away from it, or when, vice versa, the latter 

approaches the former or is moved away from it. It seems to be a matter of indifference for the 

effect, whether only the one, or only the other wire, or both alike are moved, provided that their 

relative motion is the same. If the two wires are parallel to each other, then a current of opposite 

direction will be induced by bringing them closer, a current of like direction will be induced by 

drawing them apart. Induction occurs by means of variable currents, even when the conducting 

wire, through which the variable current passes, remains undisturbed with respect to the wire in 

which a current is to be induced. If the two wires are parallel to each other, increasing current 

intensity induces a current of opposite direction, decreasing intensity a current of like direction. 

We empirically know, secondly, that the induction caused by a constant current in a 

conducting wire moving toward it is the same as the induction caused by a magnet in the same 

conducting wire, if the electrodynamic force of repulsion or attraction, which that current would 

exert on this conducting wire when a determined current passed through the latter, is equal to the 

electromagnetic force, which the magnet would exert on the same wire under the same conditions. 

See Section 11, page 61.
44

 

These empirical findings can serve to test the correctness of the laws of voltaic induction 

which are to be established. 

Moreover, it should be noted, that the theory of voltaic induction is a theory of 

electromotive forces, by means of which the induced currents themselves are still not completely 

determined. In order to completely determine the induced currents themselves, also according to 

their intensity, as well as the electrodynamic forces of repulsion and attraction and secondary 

inductions which they themselves further elicit, it requires, besides the determination of the 

electromotive force to be drawn from the theory of voltaic induction, a statement of the resistance 

of the entire circuit to which the induced conducting wire belongs, as is obvious from the 

dependency defined by Ohm's law of the current intensity on the electromotive force and the total 

resistance of the circuit. 
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The complete development of the effects of non-uniform electrical currents in moving 

conductors comprises, finally, not merely the theory of voltaic induction, that is to say, it not 

merely accounts for the generation, strengthening, and weakening of currents in the ponderable 

conductors, but it also encompasses all electrodynamic forces of repulsion and attraction, which are 

effects of the above-cited currents, and which move the ponderable currents themselves. 

In the following Sections, we intend first to begin with a prefatory consideration of 

particular cases, and then to follow with the general development of the effects of electrical 

currents which are not uniform, as they take place in galvanic currents of variable intensity, while 

the ponderable conductors are in motion. 

 

24. 

 

Law of exciting a current in a conductor, which approaches a constant current element at rest, or 

is distanced from it. 

 

The simplest case of voltaic induction to which the established fundamental law can be 

applied, is the one in which, of the two elements, only one, namely, the inducing one, already 

contains a current, specifically, a current of constant intensity, and the distance between the two 

elements is altered simply by means of the motion of the other element, namely, the induced one. 

If α  now denotes the length of the inducing element, 'α  the length of the induced element, 

then four electrical masses are to be differentiated in these two elements, namely: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses, eα+ , moves with constant velocity u+  in the direction of the element at 

rest α , which forms the angle ϑ  with the straight line drawn from α  to 'α ; the second, eα− , 

moves in the same direction with velocity u− , viz., backwards; the third, ''eα+ , which indeed 

rests in the element 'α , is carried forward by it with velocity 'u+  in that direction which forms the 

angle 'ϑ  with the extended straight line drawn from α  to 'α ; and with the same straight line, lies 

in a plane, which, with the plane containing element α  and that straight line, forms the angle ω ; 

the fourth, finally, ''eα− , which likewise rests in element 'α , is carried forward by this element 

with the same velocity 'u+  in the same direction as the third mass. The distances of the first two 

masses from the second two are all equal at the moment in question to distance r, at which the 

elements α  and 'α  are found at that moment; since, however, they do not remain equal, they are 

denoted,
45

 as on page 99,
46

 1r , 2r , 3r , 4r . 

The application of the fundamental law then yields, as on page 99,47 the following four 

partial effects among these four masses: 









+−

⋅
+

2

1

2

1

2

2

2

1

2

2

1
816

1
''

dt

rd
r

a

dt

dra

r

ee αα
 









+−

⋅
+

2

2

2

2

2

2

2

2

2

2

2
816

1
''

dt

rd
r

a

dt

dra

r

ee αα
 









+−

⋅
−

2

3

2

3

2

2

2

3

2

2

3
816

1
''

dt

rd
r

a

dt

dra

r

ee αα
 

                                                 
45

  [N. E.] See beginning of Section 28. 
46

  [N. E.] Page 158 of Weber’s Werke, Vol. 3. 
47

  [N. E.] Page 158 of Weber’s Werke, Vol. 3. 



 107 









+−

⋅
−

2

4

2

4

2

2

2

4

2

2

4
816

1
''

dt

rd
r

a

dt

dra

r

ee αα
 

These four partial effects can now first be combined into two forces, of which one is the action of 

the two masses of the inducing elements eα+  and eα−  on the positive mass ''eα+  of the induced 

element, the other the action of the same masses on the negative mass ''eα−  of the induced 

element. The former force is the sum of the first and fourth, the latter is the sum of the second and 

third. The former force is thus, with regard to the equality of 1r , 2r , 3r  and 4r  with r at the moment 

in question, 
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the latter force is 
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Now, insofar as the motions elicited by these forces in both electrical masses, ''eα+  and ''eα− , in 

their ponderable carrier 'α  are cancelled almost instantaneously by the resistance of the carrier, 

and thereby all the forces acting on those masses are immediately transferred to this carrier, the 

sums of the above two forces, as on page 100,48 gives the force which moves the carrier 'α  itself, 
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Before the transference to their carriers of those forces which originally acted on the electrical 

masses, the electrical forces themselves are, however, somewhat displaced in their carriers, and 

when this displacement is different for the positive mass ''eα+  and the negative mass ''eα− , the 

two thus being thereby separated from each other, then a galvanic current is produced in carrier 'α , 

and the force which effects this separation, is called the electromotive force. It is clear, that this 

electromotive force depends upon the difference of the above two forces, i.e., on 
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According to the determinations given in Section 22 for two constant current elements at rest in 

relation to the motion of their electrical masses, the value obtained there for that former sum was 

equal to the force determined by Ampère's law, 
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there the value of this latter difference would then, however, be  

= 0. 

According to the determinations given in this Section for a constant current element at rest 

and for a moving wire element without current with respect to their electrical masses, the value of 

that former sum, however,  

= 0, 

and the value of this latter difference 
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as is to be proven in what follows. 

It is merely necessary for this purpose, in the differential coefficients determined on page 

100,49 to put 'u+  instead of 'u−  for the velocity of the negative mass; one then obtains: 
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On the other hand: 

'coscos'8
2

2

4

2

2

3

2

2

2

2

2

1 ϑϑuu
dt

dr

dt

dr

dt

dr

dt

dr
−=−+− . 
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In contrast is 
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Further, according to page 102 f.,
50

 if one also attributes the velocity 'u+  to the negative mass of 

the induced element ''eα− , it follows that 
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from which it results that: 
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Substituting these values, it is obtained the sum of both forces, which act at the positive and 

negative masses of the induced element, 

= 0, 

in contrast, their difference is 
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or, since, according to page 104,
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 'coscoscos'sinsincos ϑϑωϑϑε +=  and according to page 

94,
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which was to be proven. 

Now, the force hereby determined seeks to separate from each other the positive and 

negative electricities in the induced element 'α  in the direction of the straight line r. In reality, 

however, this separation can only ensue in the direction of 'α , because in a linear conductor, a 

galvanic current can only take place in the direction of the conductor. Hence, if one takes the 

components of the above force in the direction of element 'α  and perpendicular to it, then only the 

first part comes under consideration as electromotive force, and, if ϕ  denotes the angle which the 

element 'α  makes with the extended straight line r, this term is 
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Ordinarily, by electromotive force is understood the accelerating force which the given 

absolute force exerts on the electrical mass 'e  contained in the unit of length of the induced 

conducting wire, which is obtained by division of the above value by e'. Finally, the electromotive 

force of a constant current element at rest on a moving wire element would hence be maintained as 

ϑϑϑε
αα

cos''coscos
2

3
cos

'
2

aui
r

⋅






 −−= . 

                                                 
51

  [N. E.] Page 164 of Weber’s Werke, Vol. 3. 
52

  [N. E.] Page 152 of Weber’s Werke, Vol. 3. 



 110 

Now, accordingly as this expression has a positive or negative value, the inducing current is 

positive or negative, where by positive currents is understood one whose positive electricity moves 

in that direction of element 'α  which forms the angle ϕ  with the extended straight line r. 

If, for example, the elements α  and 'α  are parallel to each other, and the direction in which 

the latter moves with velocity 'u+  is in the plane of both elements and perpendicular to them, then, 

when 'α  distances itself from α  by means of its motion, 

ϕϑ = ,  ϑϑ sin'cos = ,   0cos =ε , 

hence the electromotive force 

'cossin
'

2

3 2

2
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⋅+= ϑϑ
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. 

This value is always positive, when º180<ϑ , and this positive value here denotes an induced 

current of the same direction as the inducing, in accord with what empirical experience has yielded 

for this case. 

Under the same conditions, with the mere difference that the element 'α  approaches the 

element α  by means of its motion, 

ϕϑ = ,  ϑϑ sin'cos −= ,  0cos =ε , 

hence the electromotive force 
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The negative value of this force denotes an induced current of opposite direction from the inducing 

one, likewise in accord with what empirical experience has yielded for this case. 

 

25. 

 

Comparison with the empirical propositions in Section 11. 

 

The experiments communicated in Sections 10 and 11 relate to the case of voltaic induction 

considered in the previous Section. For quantitative determination of voltaic induction in this case, 

the proposition has been set forth and empirically tested there, 

 

that the induction by a constant current at rest in a conducting wire in motion toward it 

is the same, as the induction in the same conducting wire by a magnet, if the 

electrodynamic force, which that constant current would exert on that conducting wire 

with a current flowing through it, were equal to the electromagnetic force, which the 

magnet would exert on the wire through which the same current were flowing. 

 

In order to empirically establish this proposition, the following experiments were made: 

1. the electrodynamic force was measured, which a closed circuit A did exert on another 

closed circuit B; 

2. the closed circuit A was replaced with a magnet C, and the electromagnetic force which C 

did exert on B was measured; 

3. the closed conductor B, without current, was put into a specific motion, and the current 

was measured, which was then produced by current A in the moving conductor by means of voltaic 

induction; 

4. given the same motion of the closed conductor B, the current produced by means of 

magnetic induction by the magnet C, which had been substituted for the current A was measured. 

In conformity with these four experiments, the following four laws are now to be listed for 

comparison: 
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1. the law of the electrodynamic action of a closed circuit on a current element; 

2. the law of the electromagnetic action of a magnet on a current element; 

3. the law of voltaic induction by a closed circuit in an element of a moving conductor; 

4. the law of magnetic induction by a magnet in an element of a moving conductor. 

 

1. The law of the electrodynamic action of a closed circuit on a current element. 

 

This law is developed on page 48 in Section 3 of the footnote,
53

 for the case where the 

closed circuit delimits a plane and acts at a distance. Instead of returning to this special law, here I 

shall return to the more general one which Ampère has given on page 214 of his Treatise, and 

which is presented on page 36 of this Treatise.
54

 According to this law, the electrodynamic force 

acting on the current element 'α  is decomposed along three right-angled coordinate axes, whose 

origin lies in the center of element 'α , into the components X, Y, Z, which are defined as follows: 
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C , 'α  denotes the length of the current 

element which is acted upon, λ , µ , ν  the angle which 'α  forms with the three coordinate axes, 

and i and i' the intensities of the closed current and of the current element. 

 

2. The law of the electrodynamic action of a magnet on a current element. 

 

According to the fundamental law of electromagnetism, the electromagnetic force which a 

mass of north or south magnetic fluid µ±  exerts on a current element of length 'α  and of current 

intensity i' at distance r, when ϕ  denotes the angle which 'α  forms with r, is represented by 

2

sin
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''

r

i ϕµα
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in which 
2

1
'i  replaces 'χ  according to page 48,

55
 and this force seeks to move the current 

element in a direction perpendicular to 'α  and r. Thus from this derive the magnitude and direction 

of both forces, which the two masses of north and south magnetic fluid contained in a small magnet 

exert on the current element. These two forces can be combined according to the law of 

parallelograms, and from this results the magnitude of the resultant, when
56

 'm  denotes the 

magnetic moment and ψ  denotes the angle which the magnetic axis makes with the straight line r, 

and ε  the angle which direction 'α  makes with the direction D lying in the plane of the magnetic 
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axis and of line r, and the sine of this angle with line r is to ψsin  as 1 : the square root of 

ψ2cos31:1 + , and finally, if for the sake of brevity, ψ2
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The direction of this resultant is perpendicular to the directions 'α  and D. If, now, one denotes by  

a, b, c 

the cosines of the angles which the resultant, thus determined, forms with three right-angled 

coordinate axes, whose origin lies in the center of element 'α , and decomposes the resultant 

according to the direction of the latter, then the following three components are obtained: 
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and for a, b, c the following equations are obtained, when the angles which the direction of element 
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These equations, by elimination of b and c, yield the value of a as 

ε
µν

νµλ

µν
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coscos

coscoscos1

coscos
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d

a
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and in the same way, the following values of b and c: 

ε
νλ

sin

coscos

d

ac
b

−
=  

ε
λµ

sin

coscos

d

ba
c

−
= . 

If these expressions are substituted into those for the three components of the electromagnetic 

force, the following values are obtained for the latter: 

( )νµα coscos''
2

'
bcm

i
−⋅−  
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( )λνα coscos''
2

'
cam

i
−⋅−  

( )µλα coscos''
2

'
abm

i
−⋅− . 

For a large magnet, which is composed of many small ones, the three components X', Y', Z' of the 

electromagnetic force it exerts on the current element 'α  are hereafter determined as follows: 

( )νµα cos'cos''
2

'
' BC

i
X −⋅−=  

( )λνα cos'cos''
2

'
' CA

i
Y −⋅−=  

( )µλα cos'cos''
2

'
' AB

i
Z −⋅−= , 

in which ( )'' maSA = , ( )'' mbSB = , ( )'' mcSC = .57 

 

3. The law of voltaic induction by a closed circuit in an element of a moving conductor. 

 

The elementary law of induction developed in the previous Section, which holds for any 

inducing element α , yields the following value for the electromotive force with which one such 

element α  seeks to separate from each other the positive and negative electrical masses in the 

induced element 'α  in the direction of the straight line r: 

''coscos
2

3
cos

'
2

aui
r

⋅






 −− ϑϑε
αα

, 

in which 'u+  denotes the velocity with which the induced element 'α  is moved, and ε  and 'ϑ  the 

angles which the direction of this motion forms with the direction in which the positive electricity 

flows in the inducing current element α , and with the extended straight line r. ϑ  denotes, as in the 

theory of two constant current elements in Section 22, the angle which the direction in which the 

positive electricity flows in the first element α , forms with the straight line r. 

If this value for the electromotive force is compared with the value found on page 104
58

 for 

the electrodynamic force in the theory of two constant current elements, in accordance with 

Ampère's law, then the following simple relation results between the two, namely, that the former 

force is obtained from the latter by multiplication with the constant factor au'/i', provided that the 

direction, in which the positive electricity flows in element 'α , in the latter force, were the same as 

the direction in which the induced element 'α  itself moves, in the former force, that is 

λβ = , µγ = , νδ = , 

when the angle formed by both directions with three right-angled coordinate axes are respectively 

denoted 

λ , µ , ν  and β , γ , δ  

for then the values of ε  and 'ϑ  are equal in both expressions. 

From this it is now obvious, under the presupposition made, that the values stated under (1) 

for the electrodynamic force X, Y, Z also need only to be multiplied by the constant factor au'/i', in 

order to obtain the components X , Y , Z  of the electromotive force which a closed circuit exerts 

on the induced element 'α . From this it follows that 

                                                 
57

  [N. E.] That is, ( )∫= '' maA , ( )∫= '' mbB  and ( )∫= '' mcC . 

58
  [N. E.] Page 164 of Weber’s Werke, Vol. 3. 
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( )δγα coscos'
2

'
BCi

au
X −⋅−=  

( )βδα coscos'
2

'
CAi

au
Y −⋅−=  

( )γβα coscos'
2

'
ABi

au
Z −⋅−= , 

in which A, B, C have the same signification as under (1). 

 

4. The law of magnetic induction by a magnet in an element of a moving conductor. 

 

From the elementary electromagnetic force, determined according to the basic law of 

electromagnetism, which a mass of north or south magnetic fluid, µ± , exerts on a current element 

of length 'α  and of current intensity 'i  at distance r, when ϕ  denotes the angle which the direction 

of flow of the positive electricity in 'α  forms with the straight line r, namely, from the active force 

cited under (2), normal to the plane parallel with r and 'α  

2

sin

2

''

r

ai ϕµ
⋅± , 

we obtain, by multiplication with the constant ku'/i', according to the basic law of magneto-

induction, the elementary electromotive force with which that magnetic mass seeks to divide the 

positive and negative electricity in the induced element 'α , in a direction normal to the plane 

parallel with r and 'α , when the induced element 'α  is moving here with the velocity u in the same 

direction that the positive electricity flows there in element 'α . Therefore this electromotive force 

is 

2

sin

2

''

r

uk ϕµα
⋅±= . 

Here k denotes a constant factor independent of u', whose value, however, has thus far not been 

more closely determined by any measurement. 

If one denotes the angles, which in the one case the direction in which the positive 

electricity in element 'α  is moved, in the other case the direction in which the induced element 'α  

itself is moved, form with three right-angled coordinate axes, as respectively 

λ , µ , ν  and β , γ , δ , 

then under the just-presupposed identity of the directions specified, 

λβ = , µγ = , νδ = . 

Here too, it is obvious that, under the presupposed identity of the two directions mentioned, 

the values of X', Y', Z' stated under (2) need only be multiplied by the constant factor ku'/i' in order 

to obtain the components 'X , 'Y , 'Z  of the electromotive force, which a whole magnet exerts on 

the induced element 'α . From this it follows that 

( )δγα cos'cos''
2

'
' BC

ku
X −⋅−= , 

( )βδα cos'cos''
2

'
' CA

ku
Y −⋅−= , 

( )γβα cos'cos''
2

'
' AB

ku
Z −⋅−= , 

in which A', B', C' have the same signification as under (2). 
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The relations will now be examined between the laws set forth here and the empirical 

proposition mentioned in the beginning. Now, from the foregoing laws there results, when the 

electrodynamic forces stand to the electromagnetic forces in the ratio 1 : n, viz., when 

n
Z

Z

Y

Y

X

X
===

'''
 

or, if for X, Y, Z, and X', Y', Z', their values found above are substituted, when 

n
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, 

hence 
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A ⋅=
2

' , nB
i

B ⋅=
2

' , nC
i

C ⋅=
2

'  

the following relationship of the electromotive force obtained by means of voltaic induction and by 

means of magnetic induction: 

n
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This, finally, yields the following result: 
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Z

Z

Z
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Y

Y

Y

Y

X

X
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X
:

'
:

''
:

''
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'
=== , 

which is in agreement with the empirical proposition mentioned at the beginning, because the ratio 

a : k is constant. That empirical proposition, however, shows us still more than the comparison of 

the above laws, in that it makes this constant ratio equal to unity, by means of which the constant 

factor in the fundamental law of magnetic induction, k, a factor still undetermined by any 

measurement as yet, becomes equal to the constant factor a in the fundamental electrical law. 

Specifically, that would also have to take place, if there existed no magnetic fluid in the magnet, 

but, in accord with Ampère, all the effects of the magnets were produced by electrical currents in 

them. 

 

26. 

 

Comparison with the theorems established by Fechner and Neumann. 

 

Fechner has been the first to attempt, by developing their intrinsic connection, an 

explanation of the Faraday phenomena of induction in terms of the Ampère electrodynamic 

phenomena, which Lenz previously put into relation with one another merely by means of an 

empirical rule; Fechner has published the explanation in Poggendorff's Annalen, 1845, Vol. LXIV, 

page 337. In so doing, Fechner has confined himself to that form of voltaic induction, with which 

the foregoing Section dealt, namely, to that by a constant current at rest in a conducting wire 

moving toward it. For this form of voltaic induction, Fechner has actually succeeded in discovering 

its intrinsic connection with Ampère's electrodynamic phenomena, and in basing an explanation of 

it on a somewhat more generalized form of Ampère's law which holds for the latter phenomena. – 

That intrinsic connection consists essentially in the fact that, with regard to that induction, apart 
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from the current first elicited by the induction, one is dealing, just as in the Ampère phenomena, 

with reciprocal actions of electrical currents, hence the explanation of both kinds of phenomena 

would have to rest on the laws of these reciprocal actions. The electricity in the induced conducting 

wire, Fechner says specifically, would also begin to flow, as soon as this conducting wire were 

moved, specifically because it participates in the motion of its carrier. The electrical currents in 

such induced conducting wires are only differentiated from the galvanic currents in the inducing 

wires in that equal masses of positive and negative electricity move simultaneously with the same 

velocity in opposite directions in the latter, in the same directions in the former. – The 

generalization which Fechner has given to Ampère's law, consists first in the fact that the force 

which, according to Ampère, acts on the ponderable carrier, would originally act with the same 

strength and in the same direction on the electrical masses located in the carrier, and would first be 

communicated from them to the carrier; secondly, in the fact that Ampère's law does not merely 

hold for the total action of a galvanic current on another, but also for the two partial actions, which 

the first current would exert on the positive and negative electricity of the second. 

This explanation accords with the theory of this induction developed in the previous 

Section; for one finds there the justification of the right to generalize Ampère's law, on which that 

explanation is founded. This can be proven, if one considers in particular the two forces acting on 

the positive or negative electricity, as stated on page 99,59 where one finds that Ampère's law holds 

not merely for all four forces, but also for any two of them. 

Moreover, Fechner himself has already remarked that the standpoint from which he has 

interpreted the connection of Faraday's induction phenomena with the Ampère electrodynamic 

phenomena is not so general that it could be extended over all of Faraday's induction phenomena. 

As soon as the induced wire is at rest, the induction phenomena cannot be grasped from this 

standpoint, because then the motion of electricity in the induced wire is out of the question. On this 

point, Fechner says, loc. cit., page 341: “In the induction experiments, instead of moving the 

(neutral) wire a'b' away from the (excited) wire at rest, one could do the opposite, and the induction 

would always still occur. This must be accepted as an empirical datum, for proving that what 

matters here is simply the relation of the motions, and that it is permissible to substitute the 

converse for motion of the excited wire and rest in the neutral wire, in order to be able to apply the 

principle in the stated form.” 

Neumann has based his investigation on the empirical rule by which Lenz linked the 

Faraday induction phenomena to the Ampère electrodynamic phenomena, and has found a 

supplement to it in the proposition, that the strength of the induction is proportional to the velocity 

of the motion of the induced wire, when the induction was elicited by a motion of the latter. These 

two empirical rules complement each other in such a way, that Neumann has been able to derive 

from them the general laws of induced currents, since the laws immediately following from them 

for the case in which the induction is elicited by a motion of the induced conductor, are of the kind 

that can immediately find application in wider domains without undergoing modification, and can 

be extended to all forms of induction. These general laws of induced currents admit of virtually no 

doubt, with respect to their intrinsic connection or also to the empirical rules implied in them, and 

for that reason it is interesting to compare the results of the theory developed above with these laws 

which Neumann derived in completely different ways. 

Since Neumann's Treatise, submitted to the königliche Akademie der Wissenschaften in 

Berlin, has not yet been printed, I can only refer to the excerpt just now appearing in Poggendorff's 

Annalen, in this year's first issue, from which I take the following passage: 

“§ 1. From Lenz's theorem that the action which the inducing current or magnet exerts on 

the induced conductor, always produces, when the induction is elicited by a motion of the latter, an 

                                                 
59

  [N. E.] Page 158 of Weber’s Werke, Vol. 3. 
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inhibiting influence on this motion, conjointly with the theorem that the strength of the 

momentary induction is proportional to the velocity of this motion, is derived the general law of 

linear induction: 

vCdsEds ε−= . 

Here ds signifies an element of the inducing wire, and Eds the electromotive force induced in the 

element ds; v is the velocity, with which ds is moved, C is the action of the inductor on ds, resolved 

according to the direction in which ds is moved, this element being thought of as having the unit of 

current flowing through it. The magnitude ε , independent of the nature of the induced conductor, 

can be treated as a constant in the case of linear induction, but is a function of time, such that it 

very quickly decreases, when its argument has an appreciable value, and be treated as such in the 

case of surface induction and of induction in bodies.” 

From the theory developed above, has resulted the following expression, at the end of 

Section 24, for the electromotor force induced in element 'α , in which u' denotes the velocity with 

which 'α  is moved: 

ϕϑϑε
αα

cos''coscos
2

3
cos

'
2

aui
r

⋅






 −− . 

This expression was the value, resolved in the direction of element 'α , of the total 

separating force exerted by the inductor α  in the direction of the connecting straight line r, from 

which, by elimination of the factor ϕcos , the total force is once more obtained. In Section 25 (3), 

this total force is compared with the electrodynamic force, determined by Ampère's law, which the 

inductor α  would exert on element 'α , when 'α  were parallel to the direction in which the 

element 'α  were moved for purposes of induction, and through which a current flowed in this 

direction, whose intensity were = 'i . Namely, one obtains that total electromotive force exerted in 

the direction of the connecting straight line r by multiplying this electrodynamic force by the factor 

au'/i'. The above expression itself is obtained by multiplying the same force, resolved in the 

direction of the induced element 'α , by the factor au'/i'. If, therefore, this electrodynamic force, 

resolved in the direction of the induced element 'α , is denoted 

Di ⋅''α , 

then the above expression is to be made 

'' αDau−= . 

Here, u' and 'α  are to be written v and ds, in accordance with Neumann's notation; hence the theory 

developed above, yields the equation, in this notation: 

avDdsEds −= , 

in which a denotes a constant factor independent of the nature of the induced conductor, like ε  in 

Neumann's equation, because here it is a matter of linear induction. Both equations are thus in 

agreement with each other up to the factors C and D. These factors also have in common their 

ability, multiplied by ds, to express the electrodynamic force, resolved in a definite direction, which 

the inductor would exert on an element ds, thought of as located in the place through which the 

induced unit of current flows. Yet the two factors are differentiated from one another 1. by the 

direction, which the element ds, thought of as at the point of induction, would be given, and 2. 

through the direction in which the electrodynamic force exerted on this element is to be resolved. 

Specifically, these two directions are exchanged in Neumann's law. 

Neumann's law would, as can be seen from this, contradict ours, if one wanted to apply it to 

an individual current element as inductor, because factors C and D would then have entirely 

different values. It is obvious, however, that Neumann's law, in accordance with its derivation, 

holds first of all not for that individual inducing current element, but only for a closed circuit or for 

a magnet as inductor, specifically because Lenz's theorem, from which it is derived, can, being 

experimentally based, hold merely for closed circuits and magnets. That apparent contradiction 



 118 

now automatically dissolves, as soon as the application of Neumann's law is confined to closed 

circuits, interchangeable with magnets, as inductors, in which case the identity of factors C and D 

can then be proven in the following way. 

According to Ampère, the three components X, Y, Z of that force which a closed circuit of 

intensity i, for which the position of the elements is defined by the coordinates x, y, z, exerts on any 

other current element ds' of current intensity i', whose direction makes the angles λ , µ , ν  with the 

coordinate axes, when the origin of the coordinates lies in the center of the element ds', are 
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From this the values for the factors C and D can now be derived for closed circuits as inductors. 

For, first, factor C in Neumann's law is obtained, if 1X , 1Y , 1Z  denote the values taken on 

by X, Y, Z when we make i' = 1 and λ , µ , ν  are the angles which the induced element forms with 

the coordinate axes. Namely, if α , β , γ  are the angles which the direction in which the induced 

element is moved, forms with the three coordinate axes, then 

γβα coscoscos' 111 ZYXCds ++= . 

This expression is simplified, if a coordinate system is chosen in which the direction of the x axis 

coincides with the direction in which the induced element is moved. Namely, then 

1cos =α , 0cos =β , 0cos =γ , 

hence 
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Secondly, factor D is obtained, if the values assumed by X, Y, Z are denoted 'X , 'Y , 'Z , 

when we make i' = 1, and 'αλ = , 'βµ = , 'γν = , where 'α , 'β , 'γ  are the angles which the 

direction in which the induced element is moved, forms with the three coordinate axes (which 

would thus be identical with α , β , γ , if the same coordinate system were chosen). Namely, if, 

according to the present coordinate system, 'λ , 'µ , 'ν  are the angles which the induced element 

forms with the three coordinate axes (which would thus be identical with λ , µ , ν , if the present 

coordinate system were identical with the former one), then: 

'cos''cos''cos'' νµλ ZYXDds ++= . 

This expression is simplified, if one chooses a different coordinate system, as earlier, namely, one 

in which the direction of the x-axis coincides with the direction of the induced element itself, 

because then 

1'cos =λ , 0'cos =µ , 0'cos =ν  

hence: 








 −
−

−
−== ∫ ∫ 33

'
'cos'cos'

2

1
''

r

xdzzdx

r

ydxxdy
idsXDds γβ . 

Now the two coordinate systems, namely, that in which the x-axis is parallel to the direction 

in which the induced element is moved, and that in which the x-axis is parallel to the direction of the 

induced element itself, can have in common the y-axis, if it is normal to both directions, that of the 

induced element and its motion. Assuming this, it will be the case that 
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0cos =µ , 0'cos =β , 'coscos γν = , 

and since, moreover, it can be proven that 

∫
−

3r

xdzzdx
 

would have an equal value according to both coordinate systems, then  

C = D, 

which was to be proven. That zdx - xdz would have the same value for all right-angled coordinate 

systems in which, as in the two above, the origin coincides with the y-axis, is evident from the fact 

that ( )xdzzdx −
2

1
 represents the area projected on a plane normal to the common axis y, which is 

formed by the common coordinate-origin, and by the current element in question. The straight line 

r, which connects the current element in question with the induced element, has a value altogether 

independent of the coordinate system chosen. From this it results that the value of the quotient 

( ) 3/ rxdzzdx −  for the two coordinate systems employed above is always the same, hence also is 

[equal] the value of the integral extended over the entire closed circuit ∫
−

3r

xdzzdx
. 

It follows from this that Neumann's law for the domain of phenomena to which, in virtue of 

its derivation, it refers, namely, where all inductors are either magnets or closed circuits, concurs 

with the law derived from the theory developed above, but that the application of Neumann's law 

outside that domain to non-closed circuits as inductors is not permitted. 

 

27. 

 

Law of excitation of a current in a conductor at rest, when a constant current element approaches 

or withdraws from it.  

 

The law of voltaic induction for this case, where the induced conductor is at rest, and the 

inducing current element is in motion, can be derived just as it was for the first case, from the 

established fundamental electrical law. It is, however, not necessary to give this derivation, because 

a simple consideration shows that, for the second case, it would have to lead back to the same law 

as for the first. 

Namely, the fundamental electrical law, from which all laws of voltaic induction are to be 

derived, makes the action of one electrical mass on another dependent merely upon their relative 

distance, velocity, and acceleration. These, however, remain unchanged by a common motion 

attributed to both masses; hence, the action of one electrical mass on another is also not changed by 

such a common motion. Consequently, such a common motion can be attributed to all electrical 

masses without changing their actions, hence also without changing the induction dependent upon 

them. Therefore, if one has an inducing current element α , which is in motion with the absolute 

velocity u' in any direction, while the induced element 'α  is at absolute rest, then, without 

changing the induction, one can attribute to both elements, along with the electrical masses 

contained in them, a common motion of velocity u' in that direction which is diametrically opposite 

to the direction in which current element α  actually is in motion. By adding this common motion, 

the inducing element α  is brought to rest, while now the induced element 'α  moves with the same 

velocity, but in the opposite direction, as the current element is actually moving. Therefore, from 

the established fundamental law, the same induction must result for the same relative motion of 

both elements, independently of whether, during this relative motion, one or the other or neither of 
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the two elements is at absolute rest. As is well known, empirical experience accords with this 

result. 

 

28. 

 

Law of excitation of a current in a conductor by changing the current intensity in an adjacent 

conductor. 

 

If α  and 'α  denote the lengths of the inducing and induced elements, then in two elements 

four electrical masses can be further distinguished: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses eα+  would move with the variable velocity u in the direction of the 

element at rest α , which makes the angle ϑ  with the straight line drawn from α  to 'α , and du 

would denote the change in u during time-element dt; the second, eα− , would move, in 

accordance with the determinations relating to a galvanic current, in the same direction with 

velocity u− , viz. backwards, and du−  would denote the change in this velocity during time-

element dt; the third, ''eα+ , would move with constant velocity +u' in the direction of the element 

at rest 'α , which makes the angle 'ϑ  with the straight line drawn and elongated from α  to 'α ; the 

fourth, ''eα− , would, finally, move, again according to the determinations relating to a galvanic 

current, in the same direction with velocity 'u− , viz., backwards. The distances of the first two 

masses from the second two are themselves all the same at the moment in question as distance r 

between the two elements α  and 'α ; since, however, they do not remain equal, they are to be 

denoted 1r , 2r , 3r , 4r . 

For the sum of the forces which are acting on the positive and negative electricity in element 

'α , i.e., for the force, which moves element 'α  itself, one obtains the same expression as in Section 

24, namely: 
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However, for the difference of those forces, on which the induction depends, 
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Further, the same values hold here for the first differential coefficients as were found in Section 22, 

namely: 
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Since the velocity u is now variable, however, there result values for the second differential 

coefficients other than those in Section 22, where it was constant, namely: 
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Therefore, there results for 
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the same value as in Section 22, namely, when one substitutes the values of dtd /1ϑ , dtd /'1ϑ , and 

so forth, developed there on page 102,60 
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On the other hand, 
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Since, however, according to page 102,
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If these values are substituted, one obtains the sum of the forces acting on the positive and 

negative electricity in element 'α , as [in] Section 22 
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viz., the force acting on element 'α  is, when the current intensity is variable, determined just as it is 

when the current is constant, and Ampère's law is applicable to variable currents as well. 

The difference between those two forces acting on the positive and negative electricity in 

element 'α , on which the induction depends, results, on the other hand, as 

dt

du
eea

r
⋅⋅⋅−= ϑ

αα
cos'
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2

1 2 , 

or, since according to page 94,
62

 aeu = i, hence u is variable, and diduae =⋅ , 
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  [N. E.] Page 162 of Weber’s Werke, Vol. 3. 
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  [N. E.] Page 162 of Weber’s Werke, Vol. 3. 
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dt
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 The force determined in this way tries to separate the positive and negative electricities in 

the induced element 'α  in the direction of the straight line r. But in this direction the separation can 

not succeed, it can only happen in the direction of the induced element 'α  itself, which forms the 

angle 'ϑ  with the extended straight line r. Decomposing then this total force, which tries to 

separate both electricities in 'α , along this direction, that is, multiplying the difference above with 

'cosϑ , we obtain the force which produces the real separation, 

dt

di
ae

r
⋅⋅⋅−= 'coscos'

'

2

1
ϑϑ

αα
. 

If this value is divided by e', there results the electromotor force, in the ordinary sense, exerted by 

the inducing element α  on the induced element 'α  (see Section 24, page 109):
63
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. 

The induction during the time element dt, viz., the product of this time element with the acting 

electromotive force, is therefore 

di
r

a
⋅⋅⋅−= 'coscos

'

2
ϑϑ

αα
, 

hence the induction for any period of time, in which the intensity of the inducing current increases 

to i, while r, ϑ  and 'ϑ  remain unchanged, 

'coscos
'

2
ϑϑ

αα
i

r

a
⋅−= . 

The positive value of this expression denotes an induced current in element 'α  in the direction of 

'α , which makes the angle 'ϑ  with the extended straight line r; the negative value denotes an 

induced current of opposite direction. 

If both elements α  and 'α  are parallel to each other, and 'ϑϑ = , the above expression has 

a negative value for increasing current intensity, or for a positive value of i, viz. when the current 

intensity increases in α , a current in the opposite direction from the inducing current is excited in 

'α . The reverse takes place when the current intensity decreases. Both results agree with known 

facts. The proportionality of the induction to the change in intensity i of the inducing current also 

corresponds to empirical experience, to the degree that estimates suffice without precise 

measurement. 

 

29. 

 

Comparison of induction effects of constant currents on a moving conductor with those of variable 

currents on conductors at rest. 

 

In the previous Section, the laws of voltaic induction have been derived from the 

fundamental electrical law, in agreement with empirical experience, not only for the case where the 

voltaic induction is elicited by constant currents in moving conductors, but also for the case, where 

it is elicited by variable currents in conductors at rest. The laws of induction for these two cases are 

very different, and on that account it is very interesting, that nevertheless they yield very simple 

relationships between the effects of both inductions. 

                                                                                                                                                                 
62

  [N. E.] Page 152 of Weber’s Werke, Vol. 3. 
63

  [N. E.] Page 170 of Weber’s Werke, Vol. 3. 
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One such simple relationship between the induction effect of constant currents on a 

moving conductor and the induction effect of variable currents on a conductor at rest, results from 

the laws already developed in Sections 24 and 28 for individual inducing and induced elements, 

when the motion of the induced element occurs, in the first case, in the direction of the straight line 

r. For if one calculates under this assumption the total induction effect, which a current element of 

constant intensity i elicits, while the induced element is withdrawn from a given position infinitely 

far in the direction of the straight line r, or, from an infinite distance, approaches that position, then 

one finds that this total induction effect is equal to that which the inducing element would elicit, if 

its current intensity were to decrease or increase by i, in the induced element, if it continued in the 

given position. Therefore this yields the rule, for this special case, to begin with, that, by means of 

the appearance or disappearance of a current in the proximity of a conductor, the same current 

would be induced in this conductor, as if that current would have uniformly persisted, but were 

either transferred from a great distance into that proximity to the conductor, or, conversely, 

transferred from that proximity to a great distance. 

For the cited special case, this theorem easily results, as follows. The expression found at 

the end of Section 24 for the electromotor force is to be multiplied by the time element dt, in order 

to obtain the induction effect corresponding to this time element dt, or corresponding to the element 

of displacement dtu'  traversed during this time element. The value of the integral of this product 

between definite time or displacement limits then yields the total induction effect corresponding to 

the time interval or to the displacement traversed in that time interval 

∫ ⋅






 −−= dtu
r

ai 'cos'coscos
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3
cos
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2

ϕϑϑε
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. 

In our case, where the motion occurs in the straight line r, now 

drdtu =' , and 1'cos =ϑ . 

According to Section 24, 'coscoscos'sinsincos ϑϑωϑϑε += , therefore here: 

ϑε coscos = . 

Since, finally, the angles ϑ  and ϕ  have constant values during the motion in the direction of 

straight line r of the element 'α  constantly parallel to itself, that induction effect is 

∫⋅⋅+=
2

coscos'
2 r

drai
ϕϑαα . 

The value of this integral between the limits r = r to ∞=r , viz. the induction effect, while the 

induced element is infinitely distant from a given position, is 

ϕϑ
αα

coscos
'

2 r

ai
+= ; 

between the limits ∞=r  to r = r, viz. the induction effect, while the induced element, from an 

infinite distance, reaches a given position, is, on the contrary, 

ϕϑ
αα

coscos
'

2 r

ai
−= . 

If it is taken into consideration that ϕ  denotes here, in accordance with Section 24, the same angle 

which is 'ϑ  in Section 28, namely, the angle which the induced element 'α  makes with the 

prolonged straight line r, then it is seen that the induction effect is equal to that which, according to 

the law given in Section 28, is obtained when the induced element 'α  persists in the given position, 

and the current intensity i in the inducing element α  vanishes or arises. 

The relation found for both induction effects can be expressed more generally, not, of 

course, for individual elements, but for closed currents and conductors. The case may first of all be 

considered, where all elements of the induced closed conductor have the same, parallel, motion. 

The induction effect of current element α  on the induced element 'α  is, as before, 
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If β  and 'β  now denote the angle, which the two elements α  and 'α  make with the plane 

produced by the straight line r by the motion of the element 'α , and further, if γ  and 'γ  denote the 

angle, which the projections of α  and 'α  make in the plane with the direction of the motion, then 

( )γϑβϑ −= 'coscoscos , 

( )''cos'coscos γϑβϕ −= , 

γβε coscoscos = . 

The projection of the displacement element u'dt on the straight line r yields the value of dr for the 

time-element dt, 

'cos' ϑ⋅= dtudr   or  drdtu ⋅= 'sec' ϑ . 

If these values are substituted, the induction effect of α  on 'α  becomes 
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or, when ( )γϑ −'cos  and ( )''cos γϑ −  are developed, 

∫ ⋅+= dR
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'coscos'
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in which, for the sake of brevity, the following expression is denoted by dR: 
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2

2 'cos'sin'sin3'sin'cos3'tan'sincos2'coscos
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⋅+++−− ϑϑγγϑγγϑγγγγ . 

If it is taken into consideration, that in the like and parallel motion of all elements, each of them is 

displaced parallel with itself, hence the angles β , 'β , γ , 'γ  are constant, and if one makes 

r

b
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in which b denotes the perpendicular from α  to the path of induced element 'α , then the 

integration can be carried out, and the following expression is obtained as an indefinite integral: 
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The sought-for induction effect is the definite integral or the difference between the two values, 

which the expression receives, when the two limiting values for r, ϑ , ϕ , and 'ϑ  are substituted in 

it. 

If the same expression as that for elements α  and 'α  is formed for all combinations of 

inducing and induced elements, which are contained in the closed circuit and conductor, and if the 

summation of all of them is denoted 

( ) 'cot'sin'coscos
'

2
coscos
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2
ϑγγββ
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αα
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r

ai

r

ai
SS , 

then the induction effect of the closed circuit on the closed conductor is equal to the difference 

between the two values, which this summation receives, when the values for r, ϑ , ϕ  and 'ϑ , 

corresponding to those at the beginning and end of the induction, are substituted in it. 

Now, the above summation consists of two terms, and it will be proven, that the latter term 

is null for all values of r and 'ϑ . Then the induction effect of a closed circuit on a closed conductor 

reduces itself to the difference between the two values, which the first term of the above summation 

assumes, when the values for r, ϑ , ϕ , corresponding to the beginning and end of the induction are 

substituted in it. 
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That the latter term of the above summation is, namely, 

( ) 0'cot'sin'coscos
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can easily be proven, if one analyzes the inducing and induced elements according to the law that, 

for determining the interaction of two elements, for any one of them, three others can be put in, 

which form the three edges of a parallelepiped, whose diagonal is taken up by the given elements. 

On this theorem, see Section 31 below. 

Accordingly, if the elements α  and 'α  are each decomposed into three elements, of which 

the first would be parallel to the direction of the motion, the second perpendicular to r, in the plane 

produced by r when 'α  is in motion, the third perpendicular to the two others, and if they are 

denoted 

,1α  2α , 3α ,  and  1'α , 2'α , 3'α , 

then [ ] ( ) 'cot'sin'coscos/' ϑγγββαα −⋅r  becomes a summation of 9 terms. For the two terms 

proportional to 13 'αα  and to 23 'αα , the factor is 0cos =β ; for the two terms proportional to 31 'αα  

and to 32 'αα , the factor is 0'cos =β ; for the term proportional to 33 'αα  the two factors are 

0'coscos == ββ ; finally, for the 6th and 7
th

 terms, which are proportional to 11 'αα  and to 12 'αα , 

the factor is ( ) 0'sin =−γγ . Hence there remain only two more terms, namely, those proportional to 

21 'αα  and to 12 'αα , for which 1cos =β , 1'cos =β , ( ) 'cos'sin ϑγγ m=− ; these two terms are thus: 
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and for the sake of brevity, may be denoted A and B. If one now proceeds in like manner with each 

two elements of the closed circuit and conductor, then one finds that, among the remaining terms 

formed in just this way, two terms exist, by which A and B are cancelled, and which are to be 

denoted A' and B'. If this holds true in general, then it follows that 

( ) 0'cot'sin'coscos
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2
=−− ϑγγββ

αα
r
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S , 

which was to be proven. 

Now, the element A', by which A was cancelled, is found in the following way. Through the 

center of the inducing element α  as apex, let two cones be put, whose common axis would be 

parallel to the direction of motion, i.e., to 1α . Let these two cones delimit the induced element 'α . 

It is evident, that at least a second element 'α  of the closed circuit would still have to be delimited. 

And specifically, a current, which goes into 'α  from the outer cone to the inner, must go into 'α  

conversely from the inner to the outer. The value of 'ϑ  is the same for both elements. If one now 

decomposes the second element 'α  in just the same way as the first 'α , and denotes as 2'α  that 

lateral element which, perpendicular to the r' connecting 'α  with α , lies in the plane produced by 

r' by the motion of 'α , then the term proportional to 21 'αα  will be the term A', by means of which 

A is cancelled. However, 
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and 22 ':' αα  are in the ratio of their distances from the common apex of the two cones, i.e., the ratio 

': rr , hence 
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If these values are substituted, then 
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and is, irrespective of the sign, equal to the value of A. From the opposite direction in which, as 

stated above, the elements 'α  and 'α , or 2'α  and 2'α , have the same current flowing through 

them, it can be easily recognized, that if in A, ( ) 'cos'sin ϑγγ m=− , and in A', ( ) 'cos'sin ϑγγ ±=− , 

that therefore the values of A and A' always have opposite signs; hence the two cancel each other 

out. 

It can occur, that in addition to 'α  and 'α , yet a third element of the conductor is defined 

by the same cones; then, however, there must necessarily exist, if the conductor is closed, yet a 

fourth as well, and the same is true of the third and fourth as of the first and second, and so forth. 

In a similar way, B', which cancels B, is found, when the center of the induced element 'α  

is made the apex of two cones, whose common axis is parallel to the direction of the motion, and 

which delimit the inducing elementα . The same cones then delimit, from the closed inductor, yet a 

second element, from whose decomposition B' results, as A' did previously from the 

decomposition/analysis of element 'α . 

From the mutual cancellation of all terms denoted A, A', B, B', and so forth, it now follows 

that for closed currents and conductors, the equation is valid: 
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Now, from this it follows, first, when a closed conductor with all its parts is moved identically and 

parallel always in the same direction, the induction effect is 
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in which the values of r, ϑ , ϕ  are denoted 0r , 0ϑ , 0ϕ  for the beginning of the induction, and 1r , 

1ϑ , 1ϕ  for the end. If one makes ∞=1r , viz. the closed conductor, from a given position, is 

removed infinitely far distant from the inducing current, then the total induction effect elicited 

thereby is 
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S= , 

the same, which results, according to the preceding Section, for the same inducing current 

conductor and for the same induced conductor, when they persist in their initial mutual positions 

and the current i vanishes in the former. 

Secondly, when a closed conductor with all its parts is only slightly displaced identically 

and parallel in any definite direction, and then displaced again in a somewhat changed direction, 

and so forth, and when the values of r, ϑ , ϕ  are denoted 0r , 0ϑ , 0ϕ  at the start of the induction, at 

the end of the first or beginning of the second displacement are denoted 1r , 1ϑ , 1ϕ , at the end of the 

second or beginning of the third displacement 
2r , 

2ϑ , 
2ϕ , and so forth, it follows that the total 

induction effect is 

.forthsoand

coscos
'

2
coscos

'

2

coscos
'

2
coscos

'

2

22

2

11

1

11

1

00

0

   

SS

SS

+

−+

−+=

ϕϑ
αα

ϕϑ
αα

ϕϑ
αα

ϕϑ
αα

r

ai

r

ai

r

ai

r

ai

 



 127 

If nr , nϑ , nϕ  denote the values of r, ϑ , ϕ  at the end of all these motions effected successively 

in different directions, then, because all terms with the exception of the first and last cancel each 

other out, the indicated value of the total induction effect reduces itself to 
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from which one sees, when ∞=nr , that the induction effect is the same, when a closed conductor is 

removed, from a given position with respect to a closed current, infinitely far from the inducing 

current through an arbitrarily curved trajectory, but in such a way that all parts always remain 

parallel to each other, as if the same thing would occur through a straight trajectory, or as if the 

closed conductor would persist in its original position and the current i in the inducing conductor 

would vanish, namely 
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If, thirdly and finally, the closed conductor moves with complete arbitrariness, then the 

motion of any one of its elements at any moment can be resolved into a rotation around its center, 

and into a parallel displacement of the whole element. The induction effect of the rotation of an 

element around its center is = 0, because r remains unchanged thereby, hence dr = 0. The 

displacement of each element can be decomposed into three displacements in the directions of three 

coordinate axes. For the parallel displacement of all elements of the closed conductor in any of 

these directions, then, 

( ) 0'cos'sin'coscos
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from which it can easily be seen that even in arbitrary motion of the closed conductor, it follows 

that the induction effect 
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in which 0r , 0ϑ , 0ϕ  and nr , nϑ , nϕ  denote the values of r, ϑ , ϕ  at the beginning and end of the 

induction. 

The relationship discussed here between the induction effect of a closed constant current on 

a closed conductor in motion, and between the induction effect of a closed variable current on a 

closed conductor at rest, has already been presented with greater generality by Neumann, loc. cit. 

Namely, Neumann bases on the empirical foundation cited in Section 26, the conclusion that the 

total induction effect corresponding to the transference of the induced conductor from one position 

to another, is independent of the intermediate positions, which it passes through, and merely 

depends upon the difference in the potential values of the inductor at the start and end of the 

trajectory. After Neumann has stated this theorem for the induction effect of constant currents on 

moving conductors, he continues on page 39, loc. cit.: “From the independence of the induced 

electromotor force from the motion per se, it is inferred, that any cause, which elicits a change in 

the value of the potential of a closed current with respect to a closed conductor, induces a current, 

whose electromotor force is expressed by means of the change which the potential has undergone.” 

With the help of this theorem, Neumann has reduced the determination of the second kind of 

voltaic induction, namely, that of a variable current on a conductor at rest, to that of the first kind, 

namely, of a constant current on a conductor in motion. The above-mentioned relationship between 

both induction effects follows self-evidently. The final basis of all these relationships can now be 

directly proven according to the above, in the fundamental electrical law, according to which every 

two electrical masses act on each other at a distance. 
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30. 

 

General Law of Volta-induction. 

 

After considering the two main cases of voltaic induction, namely, where either the current 

is constant, but the conductor is in motion, or where the current is variable, but the conductor is 

unmoved, the general law of determination of the effects of arbitrarily moving currents through 

which a current passes according to the laws of galvanism can easily be developed. 

α  and 'α  denote once again the lengths of two elements, of which the first, α , is assumed 

to be at rest. In accordance with Section 27, this assumption does not restrict the generality of the 

treatment, because each motion of element α  can be carried over to 'α , by attributing to it the 

opposite direction in 'α . In these two elements, as earlier, the following four electrical masses are 

distinguished: 

eα+ , eα− , ''eα+ , ''eα− . 

The first of these masses, eα+ , would move with velocity +u in the direction of the element at rest 

α , which makes the angle ϑ  with the straight line drawn from α  to 'α . This velocity would 

change during time-element dt by +du. The second mass eα− , in conformity with the 

determinations given for a galvanic current, would move in the same direction, with velocity u− , 

viz., backwards, and this velocity would change during time-element dt by du− . The third mass 

''eα+  would move with velocity +u' in the direction of element 'α , which makes the angle 'ϑ  

with the straight line drawn and extended from α  to 'α . This velocity changes in time-element dt 

by +du'. However, this electrical mass also shares the motion of element 'α  itself, which occurs 

with velocity v in a direction which makes the angle η  with the straight line drawn and extended 

from α  to 'α , and is contained in a plane laid through this straight line, which forms the angle ℵ  

with the plane laid through the same straight line parallel to elementα . Velocity v would change 

during the time-element dt by dv. The fourth mass ''eα−  would move, in conformity with the 

determinations for a galvanic current, in the same direction as element 'α  with velocity -u', which 

changes in time-element dt by -du'; additionally, however, it would share with the preceding mass 

the velocity v of element 'α  itself in the already signified direction. The distances of the two 

former masses from the two latter ones are all, at the moment in question, equal to the distance r of 

the two elements themselves; however, since they do not remain equal, they are to be denoted 1r , 

2r , 3r , 4r . If two planes are laid through the straight line drawn from α  to 'α , the one parallel to 

α , the other with 'α , then ω  denotes the angle formed by these two planes.  

For the sum of the forces which act on the positive and negative electricity in element 'α , 

that is, for the force, which moves element 'α  itself, one then obtains the same expression as in 

Section 24, namely: 
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for the difference of those forces, however, on which induction depends, 
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Further, when, along with the motion of the electrical masses in their conductors, one also takes 

into calculation the motion they share with their conductors, the first differential coefficients are 

found in the way presented in Section 22, by adding to the values found there the velocity of 

element 'α , resolved in the direction of straight line r. One then obtains: 



 129 

ηϑϑ cos'cos'cos1 vuu
dt

dr
++−=  

ηϑϑ cos'cos'cos2 vuu
dt

dr
+−+=  

ηϑϑ cos'cos'cos3 vuu
dt

dr
+−−=  

ηϑϑ cos'cos'cos4 vuu
dt

dr
+++= . 

Therefore: 

'coscos'8
2

2

4

2

2

3

2

2

2

2

2

1 ϑϑuu
dt

dr

dt

dr

dt

dr

dt

dr
−=








−−+ , 

ηϑ coscos8
2

2

4

2

2

3

2

2

2

2

2

1 uv
dt

dr

dt

dr

dt

dr

dt

dr
−=








−+− . 

The second differential coefficient is obtained as in Section 22, when, in addition, the variability of 

velocities u, u', v is considered, namely: 
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For the determination of the differential coefficients dtd /1ϑ , dtd /'1ϑ , dtd /1η , and so forth, one 

now proceeds as on page 100 ff.
64

 or as in the footnote on page 102.
65

 Namely, the resulting 

changes in the direction of straight line 1r  

                                                 
64

  [N. E.] Page 159 ff. of Weber’s Werke, Vol. 3. 
65

  [N. E.] Page 162 of Weber’s Werke, Vol. 3. 
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in the plane of angle ϑϑ sin
1

⋅+=
r

udt
 

in the plane of angle 'sin
'

'
1

ϑϑ ⋅−=
r

dtu
 

 

in the plane of angle ηη sin
1

⋅−=
r

vdt
. 

If one now draws lines parallel to line r, and with the directionalities of velocities u, u' and v, 

through the center of a sphere, which cut the surface (Figure 21) at R, U, U', and V, and connects R 

with U, U' and V through the greatest arcs, then the plane containing the arc ϑ=UR , forms the 

angle designated ω , with the plane of the arc '' ϑ=RU , and forms the angle designated ℵ  with the 

plane of the arc η=VR . 

 

 
 

Let the arc UR be extended to S, U'R to S', and VR to T, and let 

ϑsin
1r

udt
RS += , 'sin

'
'

1

ϑ
r

dtu
RS −= , ηsin

1r

vdt
RT −= . 

The element of the sphere's surface in which R, S, S' and T lie, can now, as on page 102,
66

 be 

considered as an element of the plane touching the sphere at R, and the arc elements RS, RS' and RT 

as straight lines in this plane. If the parallelogram RSR'S' is completed in this plane, the diagonal 

RR' is drawn, and the second parallelogram RR'R''T is completed, then a line drawn through the 

center parallel to straight line 1r , which connects the two positive masses eα+  and ''eα+  at the 

end of time element dt, goes through point R''. 

Finally, if R'' is connected with U, U' and V by the greatest arc, then 

11'' ϑϑϑ dURdUR +=+=  

11 ''''''' ϑϑϑ dRUdRU +=+=  

1''' ηηη dVRdVR +=+= . 

From this follows that 

ℵ++=−= coscos'''1 RTRSRSURURd ωϑ  

( )ℵ+++=−= ωωϑ coscos'''''1 RTRSRSRURUd  

( )ℵ++ℵ+=−= ωη cos'cos''1 RSRSRTVRVRd . 

If the values presented above of RS, RS' and RT are substituted, then one obtains: 

                                                 
66

  [N. E.] Page 161 of Weber’s Werke, Vol. 3. 
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In the same way, the result for the two negative masses eα−  and ''eα−  is: 
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finally, for the negative eα−  and for the positive ''eα+ : 

ℵ−−−= cossincos'sin'sin4
4 ηωϑϑ
ϑ

vuu
dt

d
r  

( )ℵ+−−−= ωηωϑϑ
ϑ

cossincossin'sin'
'4

4 vuu
dt

d
r  

( )ℵ+−ℵ−−= ωϑϑη
η

cos'sin'cossinsin4
4 uuv
dt

d
r . 

Now, since for the moment under consideration, 1r  = 2r  = 3r  = 4r  = r, from this one obtains 
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If one substitutes these values into the aggregates of the second differential coefficients given 

above, then one obtains 
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These values, finally, yield the sum of the forces which act on the positive and negative electricity 

in element 'α , 
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viz., the electrodynamic force acting on the ponderable element 'α  is determined for moving 

conductors and variable current intensities, as well as for conductors at rest and constant current 

intensities, and Ampère's law finds general application with regard to these forces for given 

positions of the current elements and given current intensities. The application of this law only 

requires that the current intensities for each individual moment be given, with inclusion of the 

portion added as a result of induction. 

The difference of the forces acting on the positive and negative electricity in element 'α  

results in the same way, 
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or, since, in accordance with page 94,67 iaeu = , and, because u is variable, diduae =⋅ , 
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Now, the force determined in this way seeks to separate the positive and negative electricity in the 

induced element 'α  in the direction of straight line r. The separation cannot succeed in this 

direction, but only in the direction of the induced element 'α  itself, which makes the angle 'ϑ  with 

the extended straight line r. If, therefore, one resolves that entire force in this direction, viz., if one 

multiplies the above value by 'cosϑ , then one obtains the force which actually brings about the 

separation, 
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If this value is divided by e', then the result is the electromotor force, in the usual sense (see 

Section 24, page 109),68 exerted by the inducing element α on the induced element 'α  
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If the change in the current intensity is made 

0=
dt

di
, 

then once more we find the same law which was found in Section 24 for the induction of a constant 

current element on the moving element of a conductor, and then the electromotor force is 
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  [N. E.] Page 152 of Weber’s Werke, Vol. 3. 
68

  [N. E.] Page 170 of Weber’s Werke, Vol. 3. 
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in which the same angles, which were denoted 'ϑ , ω , ϕ  in Section 24, are named η , ℵ  and 'ϑ , 

and the velocity, which was called u', is denoted v. 

On the other hand, if, in the general value, one makes 

0=v , 

one obtains the same law which was found in Section 28 for the induction of a variable current 

element on the element of a conductor at rest, and then the electromotor force is 

dt

di
a

r
⋅−= 'coscos

'

2

1
ϑϑ

αα
. 

The electromotor force of a variable current element on the moving element of a conductor is 

therefore the sum of the electromotor forces which would take place, 1) if the element of the 

conductor were not in motion at the moment under consideration, 2) when the element of the 

conductor were indeed in motion, but the current intensity of the inducing element at the moment 

under consideration were unchanged. 

The general law of determining the effects of arbitrarily moving conductors with a current 

flowing through them according to the galvanic laws, is herewith completely given, if it may be 

assumed, that all electrical motions in linear conductors comprised under the name galvanic 

currents, actually conform precisely to the determinations given on page 83 and page 85.
69

 

However, even if it is not to be doubted that all galvanic currents come close to those 

determinations, small deviations can nevertheless rightly be expected, given the great dissimilarity 

in the sources of galvanism. These deviations and their influence on the electrodynamic 

determination of measure will be further discussed here. 

According to the determinations given on page 83 and page 85,
70

 each current element 

should contain the same amount of positive and negative electricity, and both should flow through 

the element with the same velocity, but in opposite directions. If a constant current were to consist 

of nothing but such elements, whose respective positions remained unchanged, then they would 

mutually exert no electromotor force whatever on each other. See Section 24, page 107.
71

 The 

electromotor forces, which would overcome the resistance of the individual elements, and would 

thereby, according to page 84,
72

 bring about the continuation of the current in all elements 

simultaneously, would then have to exist independently of the current elements, and would be 

distributed on all current elements in proportion to their resistance, if the current is to uniformly 

continue to exist in all elements. 

Depending on the nature of the sources of galvanism generating the original electromotor 

forces, which are independent of the interaction of the current elements themselves, that equal 

relation between the forces and the resistance to be overcome by them in all elements of the 

conductor will sometimes occur, sometimes not. Serving an example of the first case, is a 

homogeneous, circularly shaped conductor, in which a galvanic current is induced by the motion of 

a magnet in the normal passing through the center of the circle to the plane of the circle. In this case 

an electromotor force acting uniformly on all the elements of the circle would be obtained by 

means of magneto-induction, and, since the resistance is likewise the same for all elements, the 

conditions are hereby fulfilled for the uniform presence of the current in all segments. Given the 

nature of things, however, such a case seldom occurs; as a rule, no equal relation between the 

original electromotor forces and the resistance in all the elements will occur, and the inequalities 
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  [N. E.] Pages 135 and 139 of Weber’s Werke, Vol. 3. 
70

  [N. E.] Pages 135 and 139 of Weber’s Werke, Vol. 3. 
71

  [N. E.] Page 168 of Weber’s Werke, Vol. 3. 
72

  [N. E.] Page 136 of Weber’s Werke, Vol. 3. 
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must then be equalized by means of the interaction of the elements. Now, if such an interaction 

of the elements of a constant current, an interaction consisting of electromotor forces, is not to be 

excluded, then the definition of galvanic currents must be broadened. 

By a galvanic current, as opposed to other electrical motions not comprised under this 

name, should be understood a motion of the electricity in a closed conductor, such that the same 

amounts of positive and negative electricity flow through all its cross-sections simultaneously in 

the opposite directions. This equality of the positive and negative electricity flowing through does 

not necessarily presuppose the equality of the moving positive and negative masses, which was 

previously assumed, but rather, it can exist even when the latter are of unequal magnitudes, if the 

larger mass flows slower, the smaller one faster. In a galvanic current of the latter kind, new 

electromotor forces arise from the interaction of the elements, by means of which forces the 

unequal relationship of the original electromotor forces can be equalized. For as soon as the 

positive amount of electricity in an element is not equal to the negative, viz., as soon as the element, 

because of an excess of one electricity, is charged with free electricity, this free electricity itself, in 

accordance with the laws of the excitation of electricity by means of separation, becomes a source 

of electromotor forces for all other elements, which, through intensifying that charge, can be 

increased such that, added to the original electromotor forces, they become proportional to the 

resistance in all elements, for which, in the galvanic circuits with which we are familiar, a very low 

degree of electrical charge suffices. 

The investigation of how this charge in the individual elements in a closed galvanic circuit 

arises spontaneously in virtue of the initial inequality of the current in the different parts of the 

circuit, and increases until the given condition of a current uniform in all parts of the circuit is 

satisfied, leads to the internal mechanics of the galvanic circuit and is outside the scope of this 

Treatise, because there the action of electrical masses on adjacent masses must be taken into 

calculation, while here, merely the actions exerted at a distance need be considered. Independently 

of the investigation of the generation of these charges, and the resulting laws of their strength and 

distribution, here we will only discuss the influence which they have, when they are present, on the 

electrodynamic determinations of measure. The discussion of this influence is important in this 

connection, because the presence of such charges is to be viewed as a rule having only infrequent 

exceptions. Even if this influence is so slight that, even without taking it into consideration, the 

calculation accords with empirical experience in most cases, nevertheless, it can be useful to know 

what this influence consists of and how it can become appreciable. 

Under the conditions stated on page 128,73 think of the positive mass eα+  in the element α  

as increased by emα , where m denotes a small fraction, while the velocity +u of this mass, 

however, is thought of as decreasing by the small magnitude +mu; likewise think of the positive 

mass e'α+  as increased by ''enα , its velocity +u' as decreased by nu'. The forces acting on both 

electrical masses in element 'α  are to be determined, which come about through these changes. 

The two forces which the positive mass eα+  in element α  exerted on the positive and 

negative masses ''eα+  and ''eα−  in element 'α , were 
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in which, in accordance with page 129,
74

 we are to make 
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  [N. E.] Page 196 of Weber’s Werke, Vol. 3. 
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  [N. E.] Page 198 of Weber’s Werke, Vol. 3. 
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and, in accordance with page 129 and page 131:
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The Difference between the above two forces, on which the electromotor force depends, can 

be made 

2
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2

r

ee αα ⋅
= , 

because the remaining terms are very small in comparison with this first one. Now, if ( )em+1  is 

substituted for e and multiplied by '/'cos eϑ , and the original value multiplied by '/'cos eϑ  is 

subtracted, one obtains, in accordance with page 109 and page 133,
76

 the electromotor force which 

arises from the charging of element α  with free electricity and which acts on element 'α  

'cos
'

2
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Charging element 'α  itself, which is acted upon, does not change the electromotor force; for if, in 

the above difference, ( ) '1 en+  is substituted for e' and multiplied by ( ) '1/'cos en+ϑ , and the original 

value multiplied by '/'cos eϑ  is subtracted, there is no remainder. 

The sum of the above two forces, on which the electrodynamic force acting on the 

ponderable carrier depends, is obtained by substitution of the values arrived at 
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From this is obtained 1) the portion arising from the increase in the mass eα+ , of the force with 

which the elements α  and 'α  repel each other, when ( )em+1  is substituted for e, and the original 

value is subtracted, 
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  [N. E.] Pages 198 and 200 of Weber’s Werke, Vol. 3. 
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  [N. E.] Pages 170 and 202 of Weber’s Werke, Vol. 3. 
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2) the portion of the force arising from the decrease in velocity +u, when ( )um−1  is substituted for 

u, and the original value is subtracted, 
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3) the portion of the force arising from the increase in the mass ''eα+ , when ( ) '1 en+  is substituted 

for e', and the original value is subtracted, 
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4) the portion of the force arising from the decrease in the velocity +u', when ( ) '1 un−  is substituted 

for u', and the original value is subtracted, 
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If all these portions which arise are conjoined, one obtains the influence which the charging of 

elements α  and 'α  with free positive electricity (if m and n have positive values) or negative 

electricity (if m and n have negative values) has on the electrodynamic repulsive force which α  

and 'α  exert; to be precise, it is the resulting increase in this repulsive force, when one makes 

χ=aev , ''' iuae =  and ''' diduae = , 
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This influence, therefore, wholly vanishes, when the action on a constant current element at 

rest is considered, for which v = 0 and di' = 0. Further, this influence also vanishes in a constant 

current element in motion 'α , when the element α  acting upon it possesses no free electricity, 

because in that case m = 0 and di' = 0. Finally, if free electricity is present in elementα , there exists 

that influence in a force which is equal to that force which would be exerted on current element 'α  

by another current element in the place of α , when the masses contained in it, emα
2

1
+  and 

eα
2

1
−  were to flow with velocities v−  and v+  in the direction in which current element 'α  is 

moved with velocity +v. The necessity of this influence can also be examined from Fechner’s 

viewpoint in Section 16, page 116.77 For the case where a change occurs in current intensity i' in 

current element 'α , which is acted upon, there is added to the above, finally, an influence 

proportional to this change di', and with the sum of the free electricity present in both elements α  

and 'α , which determines the last term in the formula. 

 

                                                 
77

  [N. E.] Page 179 of Weber’s Werke, Vol. 3. 
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31. 

 

 In the method for determining galvanic current given in Section 19, on which the law 

describing two electrical masses acting on one another at a distance is based, instead of the actual 

current, in which the velocity of the flowing electricity probably fluctuates in its passage from one 

ponderable particle to the other in a steady alternation, an ideal current of uniform velocity is 

assumed. This substitution was necessary to simplify the treatment, and it seems permissible 

because it is simply a question of an action at a distance. It now remains to prove this initial 

assumption about the electrical law.  

 Let there be two electrical masses, e and e', which at the end of time t are found at a 

distance r from one another. Let their relative velocity up to this instant be a constant = γ . The 

repulsive force of the two masses in the last moment of the given time period t, would thus be, 

according to the fundamental electrical law: 
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In the following element of time, ε , an acceleration  

α=
2

2

dt

rd
 

occurs, whereby the repulsive force for the duration of the time period will be 
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We now multiply the increase in force, which has occurred from the previous moment to the 

present one, by the time element ε  itself. We thus obtain, as the amount by which the repulsive 

action has grown by this acceleration over the path dr, in which the masses e and e' have distanced 

themselves in the time ε,     

αε⋅⋅=
r

eea '

8

2

 . 

The relative velocity of the two masses, which before the time element ε  was = γ  is then, after 

this time element, 

αεγ += . 

Let this now remain unchanged, then the repulsive force of the two masses, when they have arrived 

at the distance ρ ,  
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whereby, when αε   is very small in comparison to γ , it becomes 
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Multiplying this expression by the time  

αεγ
ρ
+
d

, 

in which both masses have distanced themselves from one another by the line element ρd , and 

integrating between the limits r=ρ  to 1r=ρ , we get the repulsive action of the two masses over 

the distance rr −1 , as  
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Finally at the instant when the two masses are at the distance 1r , a deceleration 

α−=
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2

dt

rd
 

occurs, which just as the earlier acceleration lasted only during the time element ε , so now the 

relative velocity of the two masses again returns to its original value 

γ= , 

and in the path traveled in the time element ε  there takes place a decrease in the repulsive action 
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. 

One then gets as the sum of the repulsive action over the entire path rr −1 , including the time 

elements ε , in which both the acceleration and deceleration took place,  
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or, when αε  is very small in comparison to γ ,  
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The time for which this sum applies is, however 

αεγ +
−

=
rr1 . 

If one divides the sum by this time, the average repulsive force during this time is obtained: 
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that is, the same value as would occur if the path rr −1  had been traversed at the original velocity 

γ . It thus follows that if the relative velocity of two electrical masses, arriving successively at two 

different distances of separation is the same, their average repulsive force over the time interval is 

the same as the average repulsive force which they would have achieved, if they had traveled with 

the initial relative velocity from the first distance to the latter.  

 This theorem may now be applied to the proof of the above assumption. For, when a 

particle of electricity moves in a galvanic current from one ponderable molecule to another, it will 

arrive in places both before and behind the molecule, where its velocity is the same as that of 

another electrical particle moving in another current. The average repulsive force of both particles 

for the duration of the passage of the first particle out of the first position into the next, is then the 

same, as it would have been if both particles had moved through the space with their initial relative 

velocities, that is, as if no change had taken place in the velocity of the electricity flowing from one 

molecule of the ponderable conductor to the other.  

 Besides the change in velocity of the electrical particles as they move from one molecule of 

the ponderable conductor to the next, we must also consider the changes of direction by which 

approaching particles avoid one other. One easily sees that within the measurable distances of the 

current element under consideration, no significant variation in the distances would occur, and 

accordingly only periodic variations in the relative velocity produced by these changes of direction 

would remain, which variations have already been included in the foregoing.  
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 It stands to reason, that in place of a current in which the velocity and direction of the 

flowing electricity are subjected to a periodic change, a uniform current can rightfully be 

substituted, as is done in Section 19.  

 It is also permitted, that, in place of a straight current element, a bent one be substituted, so 

long as the beginning and end points remain unaltered, and no perceptible difference from the 

straight line joining them is allowed. Finally, as happens in Article 29, in place of one element, 

three elements may be considered, which behave in respect to the one like the edges of a 

parallelepiped to its diagonal.  

 

32. 

 

The discovered fundamental electrical law can be expressed in different ways, which will be 

illustrated by a few examples. 

1) Because distance r is always a positive magnitude, it can be written as 2ρ . This yields
78
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If these values are substituted in the formula 







+−

2

22

2

22

2 816
1

'

dt

rd
r

a

dt

dra

r

ee
, the following shorter 

formula is obtained: 









+

2

2

3
4

4 4
1

'

dt

daee ρ
ρ

ρ
. 

2) By reduced relative velocity of the masses e and e' should be understood that relative 

velocity, which those masses, reaching at the end of time t the distance r, the relative velocity 

dtdr / , and the relative acceleration 22 / dtrd , would possess, if the last-named were constant, at 

the moment ( )ϑ−t , at which both, according to this premise, would meet at one point. If v denotes 

this reduced relative velocity, then according to the well-known law of uniform acceleration: 
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By elimination ofϑ , these two equations yield: 
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formula is obtained: 
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  [N. E.] The last equation should be understood as ( )222 22 ρρρ ddrd += . 
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  [N. E.] These equations should be understood as 2ρ=r , 
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which can be verbally expressed in the following way: The decrease, caused by the motion, in the 

force with which two electrical masses would act upon each other, if they were not in motion, is 

proportional to the square of their reduced relative velocity. 
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 is the absolute force with which the mass e acts on and 

repels the mass e', and conversely, e' acts on and repels e, then there follows from this the 

accelerative force for mass e80 
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for mass e', 
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The following relative acceleration results for both masses: 
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If to this is added that relative acceleration which results for the same masses, partly from the 

persistence of their motion in their present trajectories, partly from the influence of other bodies, 

which would be conjointly denoted as f, then the following equation is obtained for the total 

relative acceleration, i.e., for 22 / dtrd : 
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With the help of this equation, the differential coefficient 22 / dtrd  can be determined and its value 

put into the formula 
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representing the force with which two electrical masses act upon each other, independent of their 

relative acceleration:
81

 

                                                 
80

  [N. E.] What Weber calls here the accelerative force for mass e (beschleunigende Kraft für die Masse e) is the 

acceleration of the particle with charge e relative to an inertial system of reference when we suppose a system of units 

for which the inertial mass of this particle is equal to e. In his sixth major Memoir published in 1871, which has already 

been translated to English (W. Weber, Philosophical Magazine, Vol. 42, pp. 1-20 and 119-149 (1872), “Electrodynamic 

measurements – Sixth Memoir, relating specially to the principle of the conservation of energy”), Weber generalizes 

this result considering the inertial masses of the particles with charges e and 'e  as given by, respectively, ε  and 'ε . In 

this case he was considering a system of units for which the unit of mass is one milligram; see especially pages 2 and 3 

of this English translation of 1872. In this case the acceleration of the particle with charge e would be given by, 

according to Newton’s second law of motion: 







+−=

2

22

2

22

2 816
1

 

'

dt

rd
r

a

dt

dra

r

ee
a

ε
. By the same reasoning the 

acceleration 'a  of the particle with charge 'e  would be given by 







+−=

2

22

2

22

2 816
1

 '

'
'

dt

rd
r

a

dt

dra

r

ee
a

ε
. 

81
  [N. E.] In the paper of 1871 quoted above, this expression takes the following more generalized form (see pages 3, 4 

and 147 of W. Weber, Philosophical Magazine, Vol. 43, pp. 1-20 and 119-149 (1872), “Electrodynamic measurements 

– Sixth Memoir, relating specially to the principle of the conservation of energy”): 
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Accordingly, this force depends on the magnitude of the masses, on their distance, on their relative 

velocity, and, finally, on that relative acceleration f, which it reaches partly as a result of the 

persistence of its already existing motion, partly as a result of the forces acting on it from other 

bodies. 

It seems to follow from this, that the direct interaction of two electrical masses would not 

exclusively depend on these masses themselves and their relations to one another, but would also 

depend on the presence of third bodies. Now, it is well known that Berzelius has already supposed 

the possibility of the dependency of the direct interaction of two bodies on the presence of a third, 

and has given the name catalytic to the forces resulting from this. If we avail ourselves of this 

name, then it can be said hereafter that the electrical phenomena also originate in part from 

catalytic forces. 

This demonstration of catalytic forces for electricity is, however, no strict inference from 

the discovered fundamental electrical law. That would be the case only if one necessarily had to 

associate this fundamental law with the idea that only such forces would thereby be determined 

which electrical masses directly exerted upon one another at a distance. It is, however, possible to 

conceive that the forces included under the discovered fundamental law are also the kind of forces 

which two electrical masses indirectly exert upon one another, and which hence must depend, first 

of all upon the transmitting medium, and further upon all bodies, which act on this medium. It can 

easily occur, that such indirectly exerted forces, when the transmitting medium evades our 

observation, appear as catalytic forces, although they are not. In order to speak of catalytic forces 

in such cases, the concept of catalytic force would have to be fundamentally modified. That is, by 

catalytic force one would have to understand the kind of indirectly exerted force, which can be 

determined by a general rule, by means of a positive knowledge of the bodies to whose influence 

the transmitting medium is subjected, without knowledge, however, of this medium itself. The 

discovered fundamental electrical law yields a general rule for determination of catalytic forces in 

this sense. 

Another still undecided question is, however, whether the knowledge of the transmitting 

medium, even if it is not necessary for the determination of forces, would nevertheless be useful. 

That is, the general rule for determination of forces could perhaps be expressed still more simply, 

when the transmitting medium were taken into consideration, than was otherwise possible in the 

fundamental electrical law presented here. However, investigation of the transmitting medium, 

which perhaps would elucidate many other things as well, is itself necessary in order to decide this 

question. 

The idea of the existence of such a transmitting medium is already found in the idea of the 

all-pervasive neutral electrical fluid, and even if this neutral fluid, apart from conductors, has up to 
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. In this equation e  and 'e  are the charges of the particles with inertial masses 

ε  and 'ε , and Weber replaced a/4  by c. This constant c had already been measured by Weber and Kohlrausch in 

1854-5, who found it as smm /10439450
6× . That is, it is essentially 2  times light velocity in vacuum. It should not 

be confused with the present day constant c, which is equal to the light velocity in vacuum. There is an English 

translation of a paper by Weber and Kohlrausch describing this fundamental measurement which they were the first to 

perform: W. Weber and R. Kohlrausch, “On the amount of electricity which flows through the cross-section of the 

circuit in galvanic currents,” In: F. Bevilacqua and E. A. Gianetto, editors, Volta and the History of Electricity, pp. 287-

297 (Università degli Studi di Pavia and Editore Ulrico Hoepli, Milano, 2003). 



 142 

now almost entirely evaded the physicists' observations, nevertheless there is now hope that we 

can succeed in gaining more direct elucidation of this all-pervasive fluid in several new ways. 

Perhaps in other bodies, apart from conductors, no currents appear, but only vibrations, which can 

be observed more precisely for the first time with the methods discussed in Section 16. Further, I 

need only recall Faraday's latest discovery of the influence of electrical currents on light 

vibrations, which make it not improbable, that the all-pervasive neutral electrical medium is itself 

that all-pervasive ether, which creates and propagates light vibrations, or that at least the two are so 

intimately interconnected, that observations of light vibrations may be able to explain the behavior 

of the neutral electrical medium. 

Ampère has already called attention to the possibility of an indirect action of electrical 

masses on each other, as cited in the introduction on page 3,
82

 “namely, according to which, the 

electrodynamic phenomena” would be ascribed “to the motions communicated to the ether by 

electrical currents.” Ampère himself, however, pronounced the examination of this possibility an 

extraordinarily difficult investigation, which he would have no time to undertake. 

If, in addition, new empirical data, such as, for example, those which will perhaps emerge 

from further pursuit of the experiments to be carried out in accordance with Section 16 on electrical 

vibrations, and from Faraday's discovery, should appear to be particularly appropriate for gradually 

eliminating the difficulties not overcome by Ampère, then the fundamental electrical law in the 

form given here, independent of the transmitting medium, may afford a not insignificant basis for 

expressing this law in other forms, dependent upon the transmitting medium. 
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  [N. E.] Page 30 of Weber’s Werke, Vol. 3. 




